Advertisement

American Journal of Potato Research

, Volume 92, Issue 4, pp 502–510 | Cite as

Importance of Early-Season Nitrogen Rate and Placement to Russet Burbank Potatoes

  • Keith A. KellingEmail author
  • Ronald F. Hensler
  • Phillip E. Speth
Article

Abstract

Early-season nitrogen (N) is necessary for optimal potato vegetative growth and creating an optimal growing condition for high yields; however, on sandy soils it also increases the risk of losing fertilizer N through leaching. This 3-year field experiment evaluated whether a smaller amount of N placed near the plant roots could provide the benefits associated with higher rates of early N applications that were less well placed. Two rates of N applied at emergence (40 or 80 kg N ha−1) were spot-placed (5 to 7 cm around each plant), banded along the row, or broadcast applied, and compared to no N or where all of the in-season N was applied at tuberization. All plots except the zero N controls received a total of 170 kg ha−1 of in-season N. Where emergence N was spot-applied in some years, tuber numbers were reduced compared to where the N was broadcast, and in these situations, resulted in increased tuber size and higher yields of prime-sized tubers (U.S. No. 1, 170 to 370 g). Where differences existed, results from banded treatments were intermediate between those from the spot and broadcast treatments. However, in spite of apparent N placement effects likely associated with having a higher concentration of N near the plant roots early in the season, no differences were evident between the two rates of emergence N within a given placement. In this experiment, total yields were not affected by rate or placement of emergence N. Overall, this experiment provides support for the concept of placing early-season N near the plant roots, and band applications along the row may be a grower-manageable alternative for achieving this goal.

Keywords

Nitrogen leaching Nitrogen timing Tuber number Solanum tuberosum L. 

Resumen

El nitrógeno (N) al inicio del ciclo es necesario para el crecimiento vegetativo óptimo de la papa y para generar una condición óptima de crecimiento para altos rendimientos; no obstante, en suelos arenosos también se aumenta el riesgo de pérdida de fertilizante nitrogenado por lixiviación. En este experimento de campo de tres años se evaluó si una cantidad menor de N ubicada cerca de las raíces de la planta pudiera suministrar los beneficios asociados con niveles más altos de aplicaciones tempranas de N que no estuvieran tan bien ubicadas. Se aplicaron dos niveles de N a la emergencia en manchones (40 u 80 kg N ha−1, 5 a 7 cm alrededor de cada planta), en banda a lo largo del surco, o disperso, y se compararon con ausencia de N, o cuando todo el N del ciclo se aplicó a la tuberización. Todos los lotes, con excepción de los testigos de cero N, recibieron un total de 170 kg ha−1 de N en el ciclo. Cuando se aplicó el N en manchones a la emergencia, en algunos años, se redujo el número de tubérculos en comparación a cuando se aplicó disperso, y en estas situaciones, resultó en el aumento en el tamaño del tubérculo y en rendimientos más altos de tubérculos de tamaño de primera (U.S. No. 1, 170 a 370 g). En donde hubo diferencias, los resultados de los tratamientos en banda fueron intermedios entre los de manchones y los dispersos. No obstante, a pesar de los efectos aparentes de la ubicación del N, probablemente asociados con el contenido mayor en la concentración de N cerca de las raíces de las plantas temprano en el ciclo, no se evidenciaron diferencias entre los dos niveles del N de emergencia dentro de una misma ubicación. En este experimento, no se afectaron los rendimientos totales por el nivel o ubicación del N a la emergencia. En general, este experimento proporciona respaldo al concepto de la ubicación del N temprano en el ciclo cerca de las raíces, y las aplicaciones en banda a lo largo del surco pudieran ser una alternativa manejable por el agricultor para lograr esta meta.

Notes

Acknowledgments

Support for this research provided by the Wisconsin Potato and Vegetable Growers Association Potato Industry Board, the Wisconsin Fertilizer Research Council, the University of Wisconsin Agricultural and Natural Resource Consortium, University of Wisconsin-Madison College of Agricultural and Life Sciences, and the University of Wisconsin-Stevens Point College of Natural Resources is gratefully acknowledged.

References

  1. Belanger, G., J.R. Walsh, J.E. Richards, P.H. Milburn, and N. Ziadi. 2002. Nitrogen fertilization and irrigation affects tuber characteristics of two potato cultivars. American Journal of Potato Research 79: 269–279.CrossRefGoogle Scholar
  2. Benepal, P.S. 1967. Correlations among applied nitrogen, phosphorus, and potassium and responses of the potato plant. American Potato Journal 44: 75–86.CrossRefGoogle Scholar
  3. Burns, I.G. 1980. Influence of the spatial distribution of nitrate on the uptake of N by plants: A review and a model for rooting depth. Journal of Soil Science 31: 155–173.CrossRefGoogle Scholar
  4. Clutterbuck, B.J., and K. Simpson. 1978. The interactions of water and fertilizer nitrogen in effects on growth pattern and yield of potatoes. Journal of Agricultural Science (Cambridge) 91: 161–172.CrossRefGoogle Scholar
  5. De la Morena, I., A. Guillen, and L.F. Garcia del Moral. 1994. Yield development in potatoes as influenced by cultivar and the timing and level of nitrogen fertilization. American Potato Journal 71: 165–173.CrossRefGoogle Scholar
  6. Doll, E.C., D.R. Christensen, and A.R. Wolcott. 1971. Potato yields as related to nitrate levels in petioles and soils. American Potato Journal 48: 105–112.CrossRefGoogle Scholar
  7. Dubetz, S., and J.B. Bole. 1975. Effects of nitrogen, phosphorus and potassium on yield components and specific gravity of potatoes. American Potato Journal 52: 399–405.CrossRefGoogle Scholar
  8. Dyson, P.W., and D.J. Watson. 1971. An analysis of the effects of nutrient supply on the growth of potato crops. Annals of Applied Biology 69: 47–63.CrossRefGoogle Scholar
  9. Edwards, J.H., and S.A. Barber. 1976. Nitrogen uptake characteristics of corn roots at low N concentrations as influenced by plant age. Agronomy Journal 68: 17–19.CrossRefGoogle Scholar
  10. Endelman, F.J., D.R. Keeney, J.T. Gilmour, and P.G. Saffigna. 1974. Nitrate and chloride movement in a Plainfield loamy sand under intensive irrigation. Journal of Environmental Quality 3: 295–298.CrossRefGoogle Scholar
  11. Errebhi, M., C.J. Rosen, S.C. Gupta, and D.E. Birong. 1998. Potato yield response and nitrate leaching as influenced by nitrogen management. Agronomy Journal 90: 10–15.CrossRefGoogle Scholar
  12. Firman, D.M., and E.J. Allen. 1988. Field measurements of the photosynthetic rate of potatoes grown with different amounts of nitrogen fertilizer. Journal of Agricultural Science (Cambridge) 111: 85–90.CrossRefGoogle Scholar
  13. Fixen, P.E., and K.A. Kelling. 1981. Potato fertility requirements and recommendations: Nitrogen. In Wisconsin Potato Manual, ed. D. Curwen. Madison: Department of Horticulture, University of Wisconsin-Madison.Google Scholar
  14. Frota, J.N.E., and T.C. Tucker. 1978. Absorption rates of ammonium and nitrate by red kidney beans under salt and water stress. Soil Science Society of America Journal 42: 753–756.CrossRefGoogle Scholar
  15. Fulton, J.M. 1970. Relationship of root extension to the soil moisture level required for maximum yield of potatoes, tomatoes, and corn. Canadian Journal of Soil Science 50: 92–94.CrossRefGoogle Scholar
  16. Grewal, J.S., R.S. Verma, and B.S. Bist. 1979. Method, time and level of application of nitrogen to potato grown on acidic brown hill soils of Simla. Indian Journal of Agricultural Science 49: 683–688.Google Scholar
  17. Hanley, F., R.H. Jarvis, and W.J. Ridgman. 1965. The effects of fertilizers on the bulking of Majestic potatoes. Journal of Agricultural Science (Cambridge) 65: 159–169.CrossRefGoogle Scholar
  18. Hensel, D.R., and S.J. Locasio. 1987. Effect of rates, form, and application date of nitrogen on growth of potatoes. Proceedings of the Florida State Horticultural Society 100: 203–205.Google Scholar
  19. Horneck, D., and C. Rosen. 2008. Measuring nutrient accumulation rates of potatoes – tools for better management. Better Crops 92(1): 4–6.Google Scholar
  20. Ivins, J.D., and P.M. Bremner. 1965. Growth, development and yield in the potato. Outlook on Agriculture 4(5): 211–217.Google Scholar
  21. Joern, B.C., and M.L. Vitosh. 1995. Influence of applied nitrogen on potato. Part I: Yield, quality and nitrogen uptake. American Potato Journal 72: 51–63.CrossRefGoogle Scholar
  22. Kelling, K.A. 2000. Research observations on petiole nitrate testing. Proceedings of the Annual Wisconsin Potato Meetings 13: 175–184.Google Scholar
  23. Kelling, K.A., and P.E. Speth. 2004. Nitrogen recommendations for new Wisconsin varieties. Proceedings of the Annual Wisconsin Potato Meetings 17: 111–122.Google Scholar
  24. Kirkham, M.B., D.R. Keeney, and W.R. Gardner. 1974. Uptake of water and labelled nitrate at different depths of the root zone of potato plants grown on a sandy soil. Agro-Ecosystems 1: 31–44.CrossRefGoogle Scholar
  25. Kleinkopf, G.E., D.T. Westermann, and R.B. Dwelle. 1981. Dry matter production and nitrogen utilization by six potato cultivars. Agronomy Journal 73: 799–802.CrossRefGoogle Scholar
  26. Kleinschmidt, G.D., G.E. Kleinkopf, D.T. Westermann, and J.C. Zalewsk. 1984. Specific gravity of potatoes, Current Information Series No. 609. Idaho: University of Idaho.Google Scholar
  27. Knowles, N.R., and L.O. Knowles. 2006. Manipulating stem number, tuber set, and yield relationships for Northern- and Southern-grown potato seed lots. Crop Science 46: 284–296.CrossRefGoogle Scholar
  28. Lachat Instruments. 1992. Total Kjeldahl nitrogen in soil/plants, Quikchem method 13-107-06-02-D. Mequon, Wisconsin: User Manual, Lachat Instruments.Google Scholar
  29. Lachat Instruments. 1996a. Ammonium and nitrate in 2M KCl soil extracts, QuikChem method 12-107-06-2-A (NH4 +) and 12-107-04-1-B (NO3¯). Mequon, Wisconsin: User Manual, Lachat Instruments.Google Scholar
  30. Lachat Instruments. 1996b. Nitrate in water extracts, QuikChem method 12-101-04-1-B. Mequon, Wisconsin: User Manual, Lachat Instruments.Google Scholar
  31. Lauer, D.A. 1986. Russet Burbank yield response to sprinkler-applied nitrogen fertilizer. American Potato Journal 63: 61–69.CrossRefGoogle Scholar
  32. Lesczynski, D.B., and C.B. Tanner. 1976. Seasonal variation of root distribution of irrigated, field-grown Russet Burbank potato. American Potato Journal 53: 69–78.CrossRefGoogle Scholar
  33. Love, S.L., J.C. Stark, and T. Salaiz. 2005. Response of four potato cultivars to rate and timing of nitrogen fertilizer. American Journal of Potato Research 82: 21–30.CrossRefGoogle Scholar
  34. Millard, P., and D.K.L. Mackerron. 1986. The effects of nitrogen application on growth and nitrogen distribution within the potato canopy. Annals of Applied Biology 109: 427–437.CrossRefGoogle Scholar
  35. Millard, P., and B. Marshall. 1986. Growth, nitrogen uptake and partitioning within potato (Solanum tuberosum L.) crop, in relation to nitrogen application. Journal of Agricultural Science 107: 421–429.CrossRefGoogle Scholar
  36. Millard, P., and D. Robinson. 1990. Effect of the timing and rate of nitrogen fertilization on the growth and recovery of fertilizer nitrogen within the potato (Solanum tuberosum L.) crop. Fertilizer Research 21: 133–140.CrossRefGoogle Scholar
  37. Moorby, J., and F.L. Milthorpe. 1975. Crop physiology – some case histories. In Solanum tuberosum, ed. L.T. Evans, 225–257. Cambridge: Cambridge University Press.Google Scholar
  38. Nelson, D.W., and L.E. Sommers. 1973. Determination of total nitrogen in plant material. Agronomy Journal 65: 109–112.CrossRefGoogle Scholar
  39. Roberts, S., W.H. Weaver, and J.P. Phelps. 1982. Effect of rate and time of fertilization on nitrogen and yield of Russet Burbank potatoes under center pivot irrigation. American Potato Journal 59: 77–86.CrossRefGoogle Scholar
  40. Roberts, S., H.H. Cheng, and F.O. Farrow. 1991. Potato uptake and recovery of nitrogen-15-enriched ammonium nitrate from periodic applications. Agronomy Journal 83: 378–381.CrossRefGoogle Scholar
  41. Saffigna, P.G., and D.R. Keeney. 1977. Nitrogen and chloride uptake by irrigated Russet Burbank potatoes. Agronomy Journal 69: 258–264.CrossRefGoogle Scholar
  42. SAS (Statistical Analysis System). 1990. SAS User’s Guide, Version 6.0. Statistical Analysis Systems Institute: Cary, North Carolina.Google Scholar
  43. Sattelmacher, B., and H. Marschner. 1979. Tuberization in potato plants as affected by application of nitrogen to the roots and leaves. Potato Research 22: 49–57.CrossRefGoogle Scholar
  44. Sommerfeldt, T.G., and K.W. Knutson. 1965. Effects of nitrogen and phosphorus on the growth and development of Russet Burbank potatoes grown in southeastern Idaho. American Potato Journal 42: 351–360.CrossRefGoogle Scholar
  45. Sommerfeldt, T.G., and K.W. Knutson. 1968. Greenhouse study of early potato growth response to soil temperature, bulk density and nitrogen fertilizer. American Potato Journal 45: 231–237.CrossRefGoogle Scholar
  46. Starr, G.C., E.T. Cooley, B. Lowery, and K.A. Kelling. 2005. Soil water fluctuations in loamy sand under irrigated potato. Soil Science 170: 77–89.CrossRefGoogle Scholar
  47. Tanner, C.B., G.G. Weis, and D. Curwen. 1982. Russet Burbank rooting in sandy soils with pans following deep plowing. American Potato Journal 59: 107–112.CrossRefGoogle Scholar
  48. Vos, J. 1995. Nitrogen and the growth of potato crops. In Potato Ecology and Modelling of Crops under Conditions Limiting Growth, ed. A.J. Haverkort and D.K.L. Mackerron. The Netherlands: Kluwer Academic Publishing.Google Scholar
  49. Vos, J., and P.E.L. van der Putten. 1998. Effect of nitrogen supply on leaf growth, leaf nitrogen economy and photosynthetic capacity in potato. Field Crops Research 59: 63–72.CrossRefGoogle Scholar
  50. Waddell, J.T., S.C. Gupta, J.F. Moncrief, C.J. Rosen, and D.D. Steele. 2000. Irrigation and nitrogen-management impacts on nitrate leaching under potato. Journal of Environmental Quality 29: 251–261.CrossRefGoogle Scholar
  51. Westermann, D.T., and G.E. Kleinkopf. 1985. Nitrogen requirements of potatoes. Agronomy Journal 77: 616–621.CrossRefGoogle Scholar

Copyright information

© The Potato Association of America 2015

Authors and Affiliations

  • Keith A. Kelling
    • 1
    Email author
  • Ronald F. Hensler
    • 2
  • Phillip E. Speth
    • 1
  1. 1.Department of Soil ScienceUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.College of Natural ResourcesUniversity of Wisconsin-Stevens PointStevens PointUSA

Personalised recommendations