Skip to main content

Assessment of Potato Psyllid Bactericera cockerelli (Hemiptera: Triozidae) and Zebra Chip Disease in Four Commercial Potato Varieties in the Columbia Basin

Abstract

Potato varieties may respond differently to the occurrence of arthropod pests including plant-pathogen. Although the potato psyllid, Bactericera cockerelli Sulc. (Hemiptera:Triozidae), the putative vector of Zebra Chip (ZC) disease, has been historically reported in the southern, central and western United States, the occurrence of the disease in the Pacific Northwest (PNW) is relatively new. Thus, there is a lack of information about infestation levels in commercial varieties, including russet potatoes, the predominant variety type of the region. In addition, susceptibility of russet varieties to ZC, which has become a serious production threat for the PNW since 2011, has not been thoroughly investigated. In the current 2-year study, the level of potato psyllid infestations and the impact of ZC disease in four commercial potato varieties, Ranger Russet, Russet Burbank, Umatilla Russet and Premier Russet, was evaluated. Psyllid adults were collected using a vacuum sampler based on an inverted leaf blower design, and leaf samples were used to collect eggs and nymphs. Also, ZC incidence and severity in fresh tubers was determined. The number of naturally occurring adults, nymphs and eggs per sample was similar among varieties suggesting a lack of affinity for any given variety. There was a positive relationship between the number of infective psyllids and disease incidence in 2011, while no relationship was detected in 2012. Although all varieties were equally susceptible to the disease, Ranger Russet numerically had the highest ZC incidence in tubers and Umatilla Russet the lowest.

Resumen

Las variedades de papa pudieran responder de manera diferente a la incidencia de plagas artrópodas que incluyan fitopatógenos. Aun cuando el psílido de la papa Bactericera cockerelli Sulc. (Hemiptera: Triozidae), el supuesto vector de la enfermedad de la papa rayada (Zebra Chip, ZC), ha sido reportado históricamente en el sur, centro y occidente de los Estados Unidos, la ocurrencia de la enfermedad en el noroccidente Pacífico (PNW) es relativamente nueva. De manera que hay un vacío de información sobre los niveles de infestación en variedades comerciales, incluyendo las russets, el tipo de variedad predominante en la región. Además, la susceptibilidad de las variedades russet a ZC, que se ha convertido en una seria amenaza a la producción para el PNW desde el 2011, no ha sido investigada a fondo. En el estudio actual de dos años, se evaluaron los niveles de infestación del psílido de la papa y el impacto de la enfermedad de la ZC en cuatro variedades comerciales, Ranger Russet, Russet Burbank, Umatilla Russet y Premier Russet. Se colectaron adultos del psílido utilizando un muestrador de vacío, basado en un diseño invertido de una barredora de hojas de aire, y las muestras de hoja se usaron para colectar huevecillos y ninfas. También se determinó la incidencia y severidad de ZC en tubérculos frescos. El número de adultos que se presentó naturalmente, de ninfas y de huevos por muestra, fue similar entre variedades, lo que sugirió una carencia de afinidad para una variedad cualquiera. Hubo una relación positiva entre el número de psílidos infectivos y la incidencia de la enfermedad en 2011. No se detectó esta relación en 2012. Aun cuando todas las variedades fueron igualmente susceptibles a la enfermedad, Ranger Russet tuvo numéricamente la mayor incidencia de ZC en tubérculos y Umstilla Russet la más baja.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abad, J.A., M. Bandla, R.D. French-Monar, L.W. Liefting, and G.R.G. Clover. 2009. First report of the detection of ‘Candidatus Liberibacter’ species in zebra chip disease-infected potato plants in the United States. Plant Disease 93(1): 108.

    Article  Google Scholar 

  2. Buchman, J.L., V.G. Sengoda, and J.E. Munyaneza. 2011a. Vector transmission efficiency of Liberibacter by Bactericera cockerelli (Hemiptera:Triozidae) in Zebra Chip potato disease: Effects of psyllid life stage and inoculation access period. Journal of Economic Entomology 104(5): 1486–1495.

    Article  PubMed  Google Scholar 

  3. Buchman, J.L., B.E. Heilman, and J.E. Munyaneza. 2011b. Effects of Liberibacter-infective Bactericera cockerelli (Hemiptera:Triozidae) density on Zebra Chip potato disease incidence, potato yield, and tuber processing quality. Journal of Economic Entomology 104(6): 1783–1792.

    Article  PubMed  Google Scholar 

  4. Butler, C.D., B. Gonzalez, K.L. Manjunath, R.F. Lee, R.G. Novy, J.C. Miller, and J.T. Trumble. 2011. Behavioral responses of adult potato psyllid, B. cockerelli (Hemiptera: Triozidae), to potato germplasm and transmission of Candidatus Liberibacter psyllaurous. Crop Protection 30: 1233–1238.

    Article  Google Scholar 

  5. Cating, R.A., S. I. Rondon and P. B. Hamm. 2014. High-fidelity PCR improves detection of Zebra Chip (Candidatus Liberibacter solanacearum) in potato tubers, plants and potato psyllids (Bactericera cockerelli) when compared to a conventional protocol. In 98th Annual Meeting of the Potato Association of America, Spokane, Washington, 27–31 July.

  6. Cooper, W.R., V.G. Sengoda, and J.E. Munyaneza. 2014. Localization of ‘Candidatus Liberibacter solanacearum’ (Rhizobiales: Rhizobiaceae) in Bactericera cockerelli (Hemiptera: Triozidae). Annals of the Entomological Society of America 107(1): 204–210.

    Article  Google Scholar 

  7. Crosslin, J.M., and J.E. Munyaneza. 2009. Evidence that the Zebra Chip disease and the putative causal agent can be maintained in potatoes by grafting and in vitro. American Journal of Potato Research 86: 183–187.

    Article  Google Scholar 

  8. Crosslin, J.M., P.B. Hamm, J.E. Eggers, S.I. Rondon, V.G. Sengoda, and J.E. Munyaneza. 2012. First report of zebra chip disease oand ‘Candidatus Liberibacter solanacearum’ on potatoes in Oregon and Washington State. Plant Disease 96: 452.

    Article  Google Scholar 

  9. Diaz-Montano, J., B. G. Vindiola, N. Drew, R. G. Novy, J. C. Miller Jr. and J. T. Trumble. 2013. Resistance of selected potato lines to the potato psyllid (Hemiptera: Triozidae). American Journal of Potato Research.

  10. Gao, F., J. Jifon, X. Yang, and T. Liu. 2009. Zebra Chip disease incidence on potato is influenced by timing of potato psyllid infestation, but not by the host plants on which they were reared. Insect Science 16: 399–408.

    CAS  Article  Google Scholar 

  11. Gharalari, A.H., C. Nansen, D.S. Lawson, J. Gilley, J.E. Munyaneza, and K. Vaughn. 2009. Knockdown mortality, repellency, and residual effects of insecticides for control of adult Bactericera cockerelli (Hemiptera: Psyllidae). Journal of Economic Entomology 102(3): 1032–1038.

    CAS  Article  PubMed  Google Scholar 

  12. Goolsby, J.A., J. Adamezyk, B. Bextine, D. Lin, J.E. Munyaneza, and G. Bester. 2007. Development of an IPM Program for management of the potato psyllid to reduce incidence of Zebra Chip disorder in potatoes. Subtropical Plant Science 59: 85–94.

    Google Scholar 

  13. Guenthner, J., J. Goolsby, and G. Greenway. 2012. Use and cost of insecticides to control potato psyllids and Zebra Chip on potatoes. Southwestern Entomologist 37(3): 263–270.

    Article  Google Scholar 

  14. Hamm, P. B., S. I. Rondon, J. M. Crosslin and J. E. Munyaneza. 2011. A new threat in the Columbia basin of Oregon and Washington: Zebra Chip. In Proceedings of the 11th Annual SCRI Zebra Chip Reporting Session. 6–9 Novermber 2011. San Antonio, TX.

  15. Liu, D., and J.T. Trumble. 2004. Tomato psyllid behavioral responses to tomato plant lines and interactions of plant lines with insecticides. Journal of Economic Entomology 97(3): 1078–1085.

    CAS  Article  PubMed  Google Scholar 

  16. Liu, D., and J.T. Trumble. 2006a. Ovipositional preferences, damage thresholds, and detection of the tomato-tomato psyllid Bactericera cockerelli (Homoptera: Psyllidae) on selected tomato accessions. Bulletin of Entomological Research 96: 197–204.

    CAS  Article  PubMed  Google Scholar 

  17. Liu, D., and J.T. Trumble. 2006b. Genetic differentiation between eastern population and recent introductions of potato psyllids (Bactericera cockerelli) into western North America. Entomologia Experimentallis et Applicata 118(3): 177–183.

    CAS  Article  Google Scholar 

  18. Madden, L.V., and G. Hughes. 2002. Plant epidemics, models and analysis. In Encyclopedia of environmetrics, ed. A.H. El-Shaarawi and W.W. Piegorsch, 1557–1561. New York: Wiley.

    Google Scholar 

  19. Martini, X., S. Seibert, S.M. Prager, and C. Nansen. 2012. Sampling and interpretation of psyllid nymph counts in potatoes. Entomologia Experimentallis et Applicata 143: 103–110.

    Article  Google Scholar 

  20. Munyaneza, J.E., J.M. Crosslin, and J.E. Upton. 2006. Beet leafhopper (Hemiptera: Cicadellidae) transmits the Columbia Basin potato purple top phytoplasma to potatoes, beets, and weeds. Journal of Economic Entomolgy 99(2): 268–272.

    CAS  Article  Google Scholar 

  21. Munyaneza, J.E., J.M. Crosslin, and J.E. Upton. 2007. Association of Bactericera cockerelli (Homoptera: Psyllidae) with “Zebra Chip”, a new potato disease in southwestern United States and Mexico. Journal of Economic Entomology 100: 656–663.

    CAS  PubMed  Google Scholar 

  22. Munyaneza, J.E., J.L. Buchman, J.E. Upton, J.A. Goolsby, J.M. Crosslin, G. Bester, G.P. Miles, and V.G. Sengoda. 2008. Impact of different potato psyllid populations on Zebra Chip incidence, severity and potato yield. Subtropical Plant Science 60: 27–37.

    Google Scholar 

  23. Munyaneza, J.E., J.L. Buchman, V.G. Sengoda, T.W. Fisher, and C.C. Pearson. 2011. Susceptibility of selected potato varieties to Zebra Chip potato disease. American Journal of Potato Research 88: 435–440.

    Article  Google Scholar 

  24. National Agricultural Statistics Services. 2012. United States Department of Agriculture (http://quickstats.nass.usda.gov/results/FFEF0613-0A7B-3D32-8D4B-4C5C031A07E3).

  25. Novy, R. G., S. M. Prager, J. C. Miller, Jr., B. Vindeola and J. T. Trumble. 2013. Characterization of potato breeding clones to determine mechanisms conferring observed resistance/tolerance to Zebra Chip disease. In Proceedings of the 13th Annual SCRI Zebra Chip Reporting Session. 3–6 November. San Antonio, TX.

  26. Prager, S.M., B. Vindiola, G.S. Kund, F.J. Byrne, and J.T. Trumble. 2013. Considerations for the use of neonicotinoid pesticides in management of Bactericera cockerelli (Šulk) (Hemiptera: Triozidae). Crop Protection 54: 84–91.

    CAS  Article  Google Scholar 

  27. Rajabaskar, D., H. Ding, Y. Wu, and S.D. Eigenbrode. 2013. Different reactions of potato varieties to infection by Potato leafroll virus, and associated responses by its vector, Myzus persicae (Sulzer). Journal of Chemical Ecology 39: 1027–1035.

    CAS  Article  PubMed  Google Scholar 

  28. Rashed, A., T.D. Nash, L. Paetzold, F. Workneh, and C.M. Rush. 2012. Transmission efficiency of ‘Candidatus Liberibacter solanacearum’ and Zebra Chip disease progress in relation to pathogen titer, vector numbers, and feeding sites. Phytopathology 102(11): 1079–1085.

    CAS  Article  PubMed  Google Scholar 

  29. Rashed, A., C.M. Wallis, L. Paetzold, F. Workneh, and C.M. Rush. 2013. Zebra Chip disease and potato biochemistry: tuber physiological changes in response to ‘Candidatus Liberibacter solanacearum’ infection over time. Phytopathology 103(5): 419–426.

    CAS  Article  PubMed  Google Scholar 

  30. Rashed, A., F. Workneh, L. Paetzold, J. Gray, and C.M. Rush. 2014. Zebra Chip disease development in relation to plant age and time of ‘Candidatus Liberibacter solanacearum’ infection. Plant Disease 98(1): 24–31.

    Article  Google Scholar 

  31. Rush, C. M., D. C. Henne, F. Workneh and L. Paetzold. 2010. Investigating titer variation of Candidatus Liberibacter solanacearum in individual potato psyllids. In Proceedings of the 10th Annual SCRI Zebra Chip Reporting Session. 7–10 November. Dallas, TX.

  32. Sandanayaka, W.R.M., A. Moreno, L.K. Tooman, N.E.M. Page-Weir, and A. Fereres. 2014. Stylet penetration activities linked to the acquisition and inoculation of Candidatus Liberibacter solanacearum by its vector tomato potato psyllid. Entomologia Experimentalis et Applicata 151: 170–181.

    CAS  Article  Google Scholar 

  33. SAS Institute. 2007. SAS user’s guide: statistics, version 9.3. Cary, NC.

  34. Sengoda, V.G., W.R. Cooper, K.D. Swisher, D.C. Henne, and J.E. Munyaneza. 2014. Latent period and transmission of “Candidatus Liberibacter solanacearum” by the potato psyllid Bactericera cockerelli (Hemptera: Triozidae). PLoS ONE 9(3): e93475.

    PubMed Central  Article  PubMed  Google Scholar 

  35. Swisher, K.D., V.G. Sengoda, J. Dixon, E. Echegaray, A.F. Murphy, S.I. Rondon, J.E. Munyaneza, and J.M. Crosslin. 2013. Haplotypes of the potato psyllid, Bactericera cockerelli, on the wild host plant, Solanum dulcamara, in the Pacific Northwestern United States. American Journal of Potato Research 90(6): 570–577.

    CAS  Article  Google Scholar 

  36. Thomas, P.E., E.C. Lawson, J.C. Zalewski, G.L. Reed, and W.K. Kaniewski. 2000. Extreme resistance to Potato leafroll virus in potato cv. Russet Burbank mediated by the viral replicase gene. Virus Research 71(1–2): 49–62.

    CAS  Article  PubMed  Google Scholar 

  37. von Ende, C.N. 1993. Repeated-measures analysis: growth and other time-dependent measures. In Design and analysis of ecological experiments, ed. S.M. Scheiner and J. Gurevitch, 113–137. New York: Chapman and Hall.

    Google Scholar 

  38. Wallis, C.M., J. Chen, and E.L. Civerolo. 2012. Zebra Chip-diseased potato tubers are characterized by increased levels of host phenolics, amono acids, and defense-related proteins. Physiological and Molecular Plant Pathology 78: 66–72.

    CAS  Article  Google Scholar 

  39. Wallis, C.M., A. Rashed, A.K. Wallingford, L. Paetzold, F. Workneh, and C.M. Rush. 2014. Similarities and differences in physiological responses to ‘Candidatus Liberibacter solanacearum’ infection among different potato cultivars. Phytopathology 104(2): 126–133.

    CAS  Article  PubMed  Google Scholar 

  40. Yen, A.L., D.G. Madge, N.A. Berry, and J.D.L. Yen. 2013. Evaluating the effectiveness of five sampling methods for detection of the tomato potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Psylloidea: Triozidae). Australian Journal of Entomology 52: 168–174.

    Article  Google Scholar 

  41. Zhang, Y.P., J.K. Uyemoto, and B.C. Kirkpatrick. 1998. A small-scale procedure for extracting nucleic acids from woody plants infected with various phytopathogens for PCR assay. Journal of Virological Methods 71: 45–50.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Ruben Marchosky, Tim Weinke and Philip Rogers for their assistance in all field work activities. Jordan Eggers and Jim Crosslin for lab testing. Also, we would like to acknowledge Dr. David Horton for reviewing the manuscript and the Oregon Potato Commission for providing financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Silvia I. Rondon.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Echegaray, E.R., Rondon, S.I. & Hamm, P.B. Assessment of Potato Psyllid Bactericera cockerelli (Hemiptera: Triozidae) and Zebra Chip Disease in Four Commercial Potato Varieties in the Columbia Basin. Am. J. Potato Res. 92, 483–490 (2015). https://doi.org/10.1007/s12230-015-9458-4

Download citation

Keywords

  • Bacteria
  • Integrated pest management
  • Insect control
  • Potato psyllid
  • Potato varieties