Skip to main content

Advertisement

Log in

Biology and control of Pectobacterium in potato

  • SYMPOSIUM PAPER
  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Pectobacterium species cause soft rot, blackleg, and stem rot in potato and a wide range of other vegetable crops and ornamental plants. Diseases caused by Pectobacterium are controlled mainly through use of healthy planting material, sanitation and copper sprays. Environmental factors, such as temperature, moisture and soil oxygen concentration, have a large effect on development of diseases caused by Pectobacterium and disease incidence can be unpredictable. The pathogen is spread by various mechanisms including water, seed, equipment and insects. Little is understood about plant resistance to soft rot bacterial pathogens and no commercial potato cultivars are resistant to soft rot, although some have tolerance and some wild potato species are resistant. Pectobacterium is a diverse genus, with multiple species capable of infecting potato. Multiple Pectobacterium species may be found in the same field and even on the same plant. Pectobacterium strains vary in aggressiveness and the virulence genes they encode but there are many commonalities across the genus. Over the past decade, genomic studies have provided new insights into Pectobacterium biology. For example, some Pectobacterium strains may elicit plant cell death to promote disease in leaves. Strains of the pathogen also produce an orange pigment and volatile compounds that increase virulence and that may act as insect kairomones. Recent work with a supervised machine learning program has identified several novel target genes likely to contribute to plant-microbe interactions, suggesting that there is still much to learn about how soft rot bacteria cause disease.

Resumen

Las especies de Pectobacterium causan pudriciones blandas, pierna negra y pudrición del tallo en papa y en una gran amplitud de otros cultivos hortícolas y plantas ornamentales. Las enfermedades causadas por Pectobacterium se controlan principalmente mediante el uso de material de siembra sano, prácticas sanitarias y aspersiones de cobre. Los factores ambientales tales como la temperatura, la humedad y la concentración del oxígeno en el suelo, tienen un gran efecto en el desarrollo de enfermedades causadas por Pectobacterium y la incidencia de la enfermedad puede ser impredecible. El patógeno se dispersa por varios mecanismos incluyendo agua, semilla, equipo e insectos. Se ha entendido poco sobre la resistencia de la planta a los patógenos bacterianos de pudrición blanda, y no hay variedades comerciales de papa que sean resistentes a la pudrición blanda, aunque algunas tienen tolerancia y algunas especies de papa silvestre son resistentes. El género Pectobacterium es diverso, con múltiples especies capaces de infectar a la papa. Se pueden encontrar múltiples especies de Pectrobacterium en el mismo campo y aun en la misma planta. Las cepas de Pectobacterium varían en su agresividad y en los genes de virulencia que codifican, pero hay muchas cosas en común en todo el género. En la década pasada, estudios genómicos han proporcionado nueva información de la biología de Pectobacterium. Por ejemplo, algunas variantes de este grupo de patógenos pueden inducir muerte de la célula vegetal para promover la enfermedad en hojas. Las cepas de este patógeno también inducen un pigmento color naranja y compuestos volátiles que aumentan la virulencia y que pudieran actuar como kairomonas de insectos. El trabajo reciente con una máquina supervisada con un programa de aprendizaje ha identificado varios genes nuevos como objetivos con probabilidades de contribuir en las interacciones planta-microbio, sugiriendo que aún hay mucho por aprender acerca de cómo las bacterias de pudrición suave causan enfermedad.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anajjar, B., S. Azelmat, M. Terta, and M.M. Ennaji. 2014. Evaluation of phytopathogenic effect of Pectobacterium carotovorum subsp. carotovorum isolated from symptomless potato tuber and soil. British Journal of Applied Science and Technology 4: 67–78.

  • Antunez-Lamas, M., E. Cabrera, E. Lopez-Solanilla, R. Solano, P. González-Melendi, J.M. Chico, I. Toth, P. Birch, L. Prichard, H. Liu, and P. Rodriguez-Palenzuela. 2009. Bacterial chemoattraction towards jasmonate plays a role in the entry of Dickeya dadantii through wounded tissues. Molecular Microbiology 74: 662–671.

  • Babujee, L., J. Apodaca, V. Balakrishnan, P. Liss, P.J. Kiley, A.O. Charkowski, J.D. Glasner, and N.T. Perna. 2012. Evolution of the metabolic and regulatory networks associated with oxygen availability in two phytopathogenic enterobacteria. BMC Genomics 13: DOI: 10.1186/1471-2164-1113-1110.

  • Bain, R.A., P. Millard, and M.C.M. Perombelon. 1996. The resistance of potato plants to Erwinia carotovora subsp. atroseptica in relation to their calcium and magnesium content. Potato Research 39: 185–194.

  • Barras, F., F. Van Gijsegem, and A.K. Chatterjee. 1994. Extracellular enzymes and pathogenesis of soft rot Erwinia. Annual Review Phytopathology 32: 210–234.

  • Bastas, K.K., H. Hekimhan, S. Maden, and M. Tor. 2009. First report of bacterial stalk and head rot disease caused by Pectobacterium atrosepticum on sunflower in Turkey. Plant Disease 93: 1352.

  • Bell, K.S., M. Sebaihia, L. Pritchard, M.T.G. Holden, L.J. Hyman, M.C. Holeva, N.R. Thomson, S.D. Bentley, L.J.C. Churcher, K. Mungall, R. Atkin, N. Bason, K. Brooks, T. Chillingworth, K. Clark, J. Doggett, A. Fraser, Z. Hance, H. Hauser, K. Jagels, S. Moule, H. Norbertczak, D. Ormond, C. Price, M.A. Quail, M. Sanders, D. Walker, S. Whitehead, G.P.C. Salmond, P.R.J. Birch, J. Parkhill, and I.K. Toth. 2004. Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. Proceedings of the National Academy of Science USA 101: 11105–11110.

  • Charkowski, A., C. Blanco, G. Condemine, D. Expert, T. Franza, C. Hayes, N. Hugouvieux-Cotte-Pattat, E. López Solanilla, D. Low, L. Moleleki, M. Pirhonen, A. Pitman, N. Perna, S. Reverchon, P. Rodriguez-Palenzuela, M.J. San Francisco, I. Toth, S. Tsuymu, J.E. van der Waals, J. van der Wolf, F. Van Gijsegem, C.-H. Yang, and I. Yedidia. 2012. The role of secretion systems and small molecules in soft rot enterobacteriaceae pathogenicity. Annual Review of Phytopathology 50: 425–449.

    Article  CAS  PubMed  Google Scholar 

  • Cho, H.R., H.Y. Joung, K.B. Lim, and K.S. Kim. 2013. Effect of calcium and silicate application on pathogenicity of Erwinia carotovora subsp. carotovora in Zantedeschia spp. Horticulture Environment Biotechnology 54: 364–371.

  • Chung, Y.S., K. Holmquist, D.M. Spooner, and S.H. Jansky. 2011. A test of taxonomic and biogeographic predictivity: resistance to soft rot in wild relatives of cultivated potato. Phytopathology 101: 205–212.

    Article  PubMed  Google Scholar 

  • Chung, Y.S., N.J. Goeser, X.K. Cai, and S. Jansky. 2013. The effect of long term storage on bacterial soft rot resistance in potato. American Journal of Potato Research 90: 351–356.

    Article  Google Scholar 

  • Czajkowski, R., G.J. Grabe, and J.M. van der Wolf. 2009. Distribution of Dickeya spp. and Pectobacterium carotovorum subsp. carotovorum in naturally infected seed potatoes. European Journal of Plant Pathology 125: 263–275.

  • Czajkowski, R., M.C.M. Perombelon, J.A. van Veen, and J.M. van der Wolf. 2011. Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathology 60: 999–1013.

  • Czajkowski, R., W.J. de Boer, and J.M. van der Wolf. 2013. Chemical disinfectants can reduce potato blackleg caused by Dickeya solani. European Journal of Plant Pathology 136: 419–432.

  • De Boer, S.H. 2002. Relative incidence of Erwinia carotovora subsp. atroseptica in stolon end and peridermal tissue of potato tubers in Canada. Plant Disease 86: 960–964.

  • Degefu, Y., M. Potrykus, M. Golanowska, E. Virtanen, and E. Lojkowska. 2013. A new clade of Dickeya spp. plays a major role in potato blackleg outbreaks in North Finland. Annals of Applied Biology 162: 231–241.

  • Frost, K.E., R.L. Groves, and A.O. Charkowski. 2013. Integrated control of potato pathogens through seed potato certification and provision of clean seed potatoes. Plant Disease 97: 1268–1280.

    Article  Google Scholar 

  • Glasner, J.D., M. Marquez-Villavicencio, H.-S. Kim, C.E. Jahn, B. Ma, B.S. Biehl, A.I. Rissman, B. Mole, X. Yi, C.-H. Yang, J.L. Dangl, S.R. Grant, N.T. Perna, and A.O. Charkowski. 2008. Niche-specificity and the variable fraction of the Pectobacterium pan-genome. Molecular Plant-Microbe Interactions 21: 1549–1560.

  • Harrison, M.D., C.E. Quinn, A. Sells, and D.C. Graham. 1977. Waste potato dumps as sources of insects contaminated with soft rot coliform bacteria in relation to re-contamination of pathogen-free potato stocks. Potato Research 20: 37–52.

    Article  Google Scholar 

  • Harrison, M.D., G.D. Franc, D.A. Maddox, J.E. Michaud, and N.J. McCarterzorner. 1987. Presence of Erwinia carotovora in surface water in North America. Journal of Applied Bacteriology 62: 565–570.

  • Helias, V., P. Hamon, E. Huchet, J.V.D. Wolf, and D. Andrivon. 2012. Two new effective semiselective crystal violet pectate media for isolation of Pectobacterium and Dickeya. Plant Pathology 61: 339–345.

  • Hogan, C.S., B.M. Mole, S.R. Grant, D.K. Willis, and A.O. Charkowski. 2013. The type III secreted effector DspE Is required early in Solanum tuberosum leaf infection by Pectobacterium carotovorum to cause cell death, and requires Wx((3–6))D/E motifs. PloS One 8: e65534.

  • Holeva, M.C., K.S. Bell, L.J. Hyman, A.O. Avrova, S.C. Whisson, P.R.J. Birch, and I.K. Toth. 2004. Use of a pooled transposon mutation grid to demonstrate roles in disease development for Erwinia carotovora subsp. atroseptica putative type III secreted effector (DspE/A) and helper (HrpN) proteins. Molecular Plant-Microbe Interactions 17: 943–950.

  • Hyman, L.J., L. Sullivan, I.K. Toth, and M.C.M. Perombelon. 2001. Modified crystal violet pectate medium (CVP) based on a new polypectate source (Slendid) for the detection and isolation of soft rot erwinias. Potato Research 44: 265–270.

    Article  Google Scholar 

  • Johnson, D.A., J.K.S. Dung, T.F. Cummings, and B.K. Schroeder. 2011. Development and suppression of aerial stem rot in commercial potato fields. Plant Disease 95: 285–291.

    Article  Google Scholar 

  • Kim, H.-S., B. Ma, N.T. Perna, and A.O. Charkowski. 2009. Prevalence and virulence of natural type III secretion system deficient Pectobacterium strains. Applied and Environmental Microbiology 75: 4539–4549.

  • Kim, H.-S., P. Thammarat, S.A. Lommel, C.S. Hogan, and A.O. Charkowski. 2011. Pectobacterium carotovorum elicits plant cell death with DspE/F, but does not suppress callose or induce expression of plant genes early in plant-microbe interactions. Molecular Plant-Microbe Interactions 24: 773–786.

  • Kubheka, G.C., T.A. Coutinho, N. Moleleki, and L.N. Moleleki. 2013. Colonization patterns of an mCherry-tagged Pectobacterium carotovorum subsp. brasiliense strain in potato plants. Phytopathology 103: 1268–1279.

  • Lambert, D.H., M.L. Powelson, and W.R. Stevenson. 2005. Nutritional interactions influencing diseases of potato. American Journal of Potato Research 82: 309–319.

  • Lebecka, R., and E. Zimnoch-Guzowska. 2004. The inheritance of resistance to soft rot (Erwinia carotovora subsp. atroseptica) in diploid potato families. American Journal of Potato Research 81: 395–401.

  • Lebecka, R., E. Zimnoch-Guzowska, and Z. Kaczmarek. 2005. Resistance to soft rot (Erwinia carotovora subsp. atroseptica) in tetraploid potato families obtained from 4x-2x crosses. American Journal of Potato Research 82: 203–210.

  • Liu, H., S.J. Coulthurst, L. Pritchard, P.E. Hedley, M. Ravensdale, S. Humphris, T. Burr, G. Takle, M.-B. Brurberg, P.R.J. Birch, G.P.C. Salmond, and I.K. Toth. 2008. Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. PLoS Pathogens 4: e1000093.

  • Lopez-Solanilla, E., F. Garcia-Olmedo, and P. Rodriguez-Palenzuela. 1998. Inactivation of the sapA to sapF locus of Erwinia chysanthemi reveals common features in plant and animal bacterial pathogenesis. Plant Cell 10: 917–924.

  • Lopez-Solanilla, E., A. Llama-Palacios, A. Collmer, F. Garcia-Olmedo, and P. Rodriguez-Palenzuela. 2001. Relative effects on virulence of mutations in the sap, pel, and hrp loci of Erwinia chrysanthemi. Molecular Plant-Microbe Interactions 14: 386–393.

  • Lulai, E.C., and D.L. Corsini. 1998. Differential deposition of suberin phenolic and aliphatic domains and their roles in resistance to infection during potato tuber (Solanum tuberosum L.) wound-healing. Physiological and Molecular Plant Pathology 53: 209–222.

  • Ma, B., M.E. Hibbing, H.-S. Kim, R.M. Reedy, I. Yedidia, J. Breuer, J. Breuer, J.D. Glasner, N.T. Perna, A. Kelman, and A.O. Charkowski. 2007. The host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathology 97: 1150–1163.

  • Marquez-Villavincencio, M., B. Weber, R.A. Witherell, D.K. Willis, and A.O. Charkowski. 2011. The 3-hydroxy-2-butanone pathway is required for Pectobacterium carotovorum pathogenesis. PloS One 6: e22974.

  • McCarter-Zorner, N.J., G.D. Franc, M.D. Harrison, J.E. Michaud, C.E. Quinn, I.A. Sells, and D.C. Graham. 1984. Soft rot Erwinia in surface and underground waters in Southern Scotland and in Colorado, United States. Journal of Applied Bacteriology 57: 95–105.

  • McCarter-Zorner, N.J., M.D. Harrison, G.D. Franc, C.E. Quinn, I.A. Sells, and D.C. Graham. 1985. Soft rot Erwinia bacteria in the rhizosphere of weeds and crop plants in Colorado, United States and Scotland. Journal of Applied Bacteriology 59: 357–368.

  • McGuire, R.G., and A. Kelman. 1984. Reduced severity of Erwinia soft rot in potato tubers with increased calcium content. Phytopathology 74: 1250–1256.

  • Moleleki, L.N., E.M. Onkendi, A. Mongae, and G.C. Kubheka. 2013. Characterisation of Pectobacterium wasabiae causing blackleg and soft rot diseases in South Africa. European Journal of Plant Pathology 135: 279–288.

    Article  Google Scholar 

  • Nabhan, S., S.H. De Boer, E. Maiss, and K. Wydra. 2013. Pectobacterium aroidearum sp. nov., a soft rot pathogen with preference for monocotyledonous plants. International Journal of Systematic and Evolutionary Microbiology 63: 2520–2525.

    Article  CAS  PubMed  Google Scholar 

  • Nykyri, J., O. Niemi, P. Koskinen, J. Nokso-Koivisto, M. Pasanen, M. Broberg, I. Plyusnin, P. Toronen, L. Holm, M. Pirhonen, and E.T. Palva. 2012. Revised phylogeny and novel horizontally acquired virulence determinants of the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathogens 8: e1003013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pérez-Mendoza, D., S.J. Coulthurst, S. Humphris, E. Campbell, M. Welch, I.K. Toth, and G.P.C. Salmond. 2011. A multi-repeat adhesin of the phytopathogen, Pectobacterium atrosepticum, is secreted by a type I pathway and is subject to complex regulation involving a non-canonical diguanylate cyclase. Molecular Microbiology 82: 719–733.

    Article  PubMed  Google Scholar 

  • Perombelon, M., and E.M. Burnett. 1991. Two modified crystal violet pectate (CVP) media for the detection, isolation, and enumeration of soft rot erwinias. Potato Research 34: 79–85.

    Article  Google Scholar 

  • Pirhonen, M., D. Flego, R. Heikinheimo, and E.T. Palva. 1993. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO Journal 12: 2467–2476.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pitman, A.R., S.A. Harrow, and S.B. Visnovsky. 2010. Genetic characterisation of Pectobacterium wasabiae causing soft rot disease of potato in New Zealand. European Journal of Plant Pathology 126: 423–435.

    Article  Google Scholar 

  • Pritchard, L., S. Humphris, G. Saddler, N.M. Parkinson, V. Bertrand, J.G. Elphinstone, and I.K. Toth. 2013. Detection of phytopathogens of the genus Dickeya using a PCR primer prediction pipeline for draft bacterial genome sequences. Plant Pathology 62: 587–596.

  • Prokkola, S. 1994. Effect of applying nitrogen fertilizer to a potato seed crop on the susceptibility of the daughter plants to Erwinia carotovora subsp. atroseptica. Potato Research 37: 103–111.

  • Samson, R., J.B. Legendre, R. Christen, M. Fischer-Le Saux, W. Achouak, and L. Gardan. 2005. Transfer of Pectobacterium chrysanthemi (Burkholder et al. al 1953) Brenner et al. al 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov as Dickeya chrysanthemi comb. nov and Dickeya paradisiaca comb. nov and delineation of four novel species, Dickeya dadantii sp nov., Dickeya dianthicola sp nov., Dickeya dieffenbachiae sp nov and Dickeya zeae sp nov. International Journal of Systematic and Evolutionary Microbiology 55: 1415–1427.

  • Slawiak, M., J.R.C.M. van Beckhoven, A.G.C.L. Speksnijder, R.L. Czajkowski, G. Grabe, and J.M. van der Wolf. 2009. Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe. European Journal of Plant Pathology 125: 245–261.

  • Slawiak, M., R. van Doorn, M. Szemes, A.G.C.L. Speksnijder, M. Waleron, J.M. van der Wolf, E. Lojkowska, and C.D. Schoen. 2013. Multiplex detection and identification of bacterial pathogens causing potato blackleg and soft rot in Europe, using padlock probes. Annals of Applied Biology 163: 378–393.

    Google Scholar 

  • Smid, E., A. Jansen, and C. Tuijn. 1993. Anaerobic nitrate respiration by Erwinia carotovora subsp. atroseptica during potato tuber invasion. Applied and Environmental Microbiology 59: 3648–3653.

  • Toth, I.K., L. Sullivan, J.L. Brierley, A.O. Avrova, L.J. Hyman, M. Holeva, L. Broadfoot, M.C.M. Pérombelon, and J. McNicol. 2003. Relationship between potato seed tuber contamination by Erwinia carotovora ssp. atroseptica, blackleg disease development and progeny tuber contamination. Plant Pathology 52: 119–126.

  • Toth, I.K., J.M. van der Wolf, G. Saddler, E. Lojkowska, V. Helias, M. Pirhonen, T.L. Lahkim, and J.G. Elphinstone. 2011. Dickeya species: an emerging problem for potato production in Europe. Plant Pathology 60: 385–399.

  • van der Wolf, J.M., B.H. de Haas, R. van Hoof, E.G. de Haan, and G.W. van den Bovenkamp. 2014. Development and evaluation of Taqman assays for the differentiation of Dickeya (sub)species. European Journal of Plant Pathology 138: 695–709.

  • Whitworth, J., and R.D. Davidson. 2008. Quality seed: seed improvement, cultivar and seed lot selection, and certification. In Potato health management, ed. D.A. Johnson, 31–41. St. Paul: American Phytopathological Society Press.

    Google Scholar 

  • Williamson, N.R., P.M. Commander, and G.P. Salmond. 2010. Quorum sensing-controlled Evr regulates a conserved cryptic pigment biosynthetic cluster and a novel phenomycin-like locus in the plant pathogen, Pectobacterium carotovorum. Environmental Microbiology 12: 1811–1827.

  • Woodward, E.J., and K. Robinson. 1990. An improved formulation and method of preparation of crystal violet pectate medium for detetion of pectolytic erwinia. Letters in Applied Microbiology 10: 171–173.

    Article  Google Scholar 

  • Yap, M.-N., J.D. Barak, and A.O. Charkowski. 2004. Genomic diversity of Erwinia carotovora subsp. carotovora and its correlation with virulence. Applied and Environmental Microbiology 70: 3013–3023.

  • Yishay, M., S. Burdman, A. Valverde, T. Luzzatto, R. Ophir, and I. Yedidia. 2008. Differential pathogenicity and genetic diversity among Pectobacterium carotovorum ssp. carotovorum isolates from monocot and dicot hosts support early genomic divergence within this taxon. Environmental Microbiology 10: 2749–2759.

  • Zimnoch-Guzowska, E., R. Lebecka, and J. Pietrak. 1999. Soft rot and blackleg reactions in diploid potato hybrids inoculated with Erwinia spp. American Journal of Potato Research 76: 199–207.

  • Zimnoch-Guzowska, E., W. Marczewski, R. Lebecka, B. Flis, R. Schafer-Pregl, F. Salamini, and C. Gebhardt. 2000. QTL analysis of new sources of resistance to Erwinia carotovora ssp. atroseptica in potato done by AFLP, RFLP, and resistance- gene-like markers. Crop Science 40: 1156–1167.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy O. Charkowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charkowski, A.O. Biology and control of Pectobacterium in potato. Am. J. Potato Res. 92, 223–229 (2015). https://doi.org/10.1007/s12230-015-9447-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-015-9447-7

Keywords

Navigation