Skip to main content

Rapid Cycling of Potato Tuber Generations by Overcoming Dormancy


Dormancy hinders progress in attempts to fast track potato tuber generations. In this study, we evaluated the ability of gibberellic acid (GA) to overcome dormancy in freshly harvested tubers of 11 potato cultivars in 2 years of field trials. Tubers were wounded and dipped in 0, 10, 100, and 1,000 ppm GA. Then they were planted in the field 5 days later. Vine length and stem number were measured throughout the season. Tubers were also harvested and weighed. Cultivars varied in their response to GA treatment. However, for all cultivars, wounding followed by treatment with 10 or 100 ppm effectively overcame dormancy. The 1,000 ppm treatment produced excessive vine growth and lower yield compared to the lower concentrations. Consequently, wounding of freshly harvested tubers, followed by a dip in 10 or 100 ppm GA is recommended to overcome tuber dormancy in programs interested in rapid cycling.


La dormancia obstaculiza el progreso en los intentos de acelerar la obtención de generaciones de tubérculos. En este estudio, evaluamos la habilidad del ácido giberelico (GA) para superar la dormancia en tubérculos recién cosechados de once variedades de papa, en dos años de ensayos de campo. Se les hicieron incisiones a los tubérculos y se sumergieron en 0, 10, 100, y 1,000 ppm de GA. Se plantaron en el campo cinco días después. Se midió la longitud y el número de tallos a lo largo del ciclo de cultivo. Los tubérculos también se cosecharon y pesaron. Las variedades tuvieron diferencias en su respuesta a los tratamientos con GA. No obstante, para todas ellas, las incisiones seguidas de tratamientos con 10 o ppm superaron efectivamente la dormancia. El tratamiento con 1,000 ppm produjo excesivo crecimiento del tallo y más bajo rendimiento comparado con las concentraciones más bajas. Consecuentemente, se recomienda hacer las heridas a los tubérculos recién cosechados, seguidas de inmersión en 10 o 100 ppm de GA para superar la dormancia del tubérculo en programas interesados en ciclos rápidos.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. Bamberg, J.B. 2010. Tuber dormancy lasting 8 years in the wild potato Solanum jamesii. American Journal of Potato Research 87: 226–228.

    Article  Google Scholar 

  2. Brian, P.W., H.G. Hemming, and M. Radley. 1955. A physiological comparison of gibberellic acid with some auxins extension of wheat coleoptile sections. Physiologia Plantarum 8: 899–912.

    CAS  Article  Google Scholar 

  3. Bryan, J. 1989. Breaking dormancy of potato tubers. International Potato Center Research Guide 16. International Potato Center. Lima, Peru.

  4. Fernie, A.R., and L. Willmitzer. 2001. Molecular and biochemical triggers of potato tuber development. Plant Physiology 127: 1459–1465.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  5. Hermundstad, S.A., and S.J. Peloquin. 1986. Tuber yield and tuber traits of haploid-wild species F1 hybrids. Potato Research 29: 289–297.

    Article  Google Scholar 

  6. Huamán, Z., and D. Spooner. 2002. Reclassification of landrace populations of cultivated potatoes (Solanum sect. Petota). American Journal of Botany 89: 947–965.

    Article  PubMed  Google Scholar 

  7. Jansky, S.H., and S.J. Peloquin. 2006. Advantages of wild diploid Solanum species over cultivated diploid relatives in potato breeding programs. Genetic Resources and Crop Evolution 53: 669–674.

    Article  Google Scholar 

  8. Jansky, S., A. Hamernik, and X. Cai. 2012. Rapid cycling with true potato seed. Seed Science and Technology 40: 43–50.

    Article  Google Scholar 

  9. Kim, H.S., J.H. Jeon, K.H. CHoi, Y.H. Joung, and H. Joung. 1999. Effects of rindite on breaking dormancy of potato microtubers. American Journal of Potato Research 76: 5–8.

    CAS  Article  Google Scholar 

  10. Liedl, B., M. Taylor, and S. Desborough. 1989. Development of a rapid-cycling population of Solanum tuberosum Group Phureja. American Journal of Potato Research 66: 557–561.

    Article  Google Scholar 

  11. Rappaport, L., H. Timm, and L.F. Lippert. 1958. Gibberellin on white potatoes. California Agriculture 12: 4–6.

    Google Scholar 

  12. Rentzsch, S., et al. 2011. Dose- and tissue-specific interaction of monoterpenes with the gibberellin-mediated release of potato tuber bud dormancy, sprout growth and induction of α-amylases and β-amylases. Planta 235: 137–151.

    Article  PubMed  Google Scholar 

  13. Sonnewald, U. 2001. Control of potato tuber sprouting. Trends in Plant Science 6: 333–335.

    CAS  Article  PubMed  Google Scholar 

  14. Spooner, D., and W. Hetterscheid. 2006. Origins, evolution, and group classification of cultivated potatoes. In Darwin’s harvest: New approaches to the origins, evolution, and conservation of crops, ed. T. Motley, N. Zerega, and H. Cross, 285–307. New York: Colombia University Press.

    Google Scholar 

  15. Suttle, J.C. 2004. Physiological regulation of potato tuber dormancy. American Journal of Potato Research 81: 157–164.

    Article  Google Scholar 

  16. Wiltshire, J., and A. Cobb. 1996. A review of the physiology of potato tuber dormancy. Annals of Applied Biology 129: 553–569.

    Article  Google Scholar 

Download references


The authors appreciate the assistance of Nick Kueler (UW-Madison Dept. Computing and Biometry) with statistical analyses.

Author information



Corresponding author

Correspondence to Shelley Jansky.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(DOCX 22 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jansky, S., Hamernik, A. Rapid Cycling of Potato Tuber Generations by Overcoming Dormancy. Am. J. Potato Res. 92, 148–152 (2015).

Download citation


  • Gibberellic acid
  • Tuber dormancy