Skip to main content

Drip as Alternative Irrigation Method for Potato in Florida Sandy Soils

Abstract

Seepage irrigation is the most common irrigation system for potato production in Florida, which relies on control of the water table to irrigate the crop. A 2-year trial was established to evaluate the feasibility of drip irrigation as an alternative to seepage for potato production. The performance of ‘Atlantic’, ‘Fabula’, and ‘Red LaSoda’ varieties were evaluated by comparing two drip tape installation depths, surface (SUR) and subsurface (SUB) with seepage (SEP). The overall potato total yield was 25.3; 19.2 and 29.9 Mg ha−1 for SUR, SUB and SEP, respectively. The SUR and SEP treatments yielded similarly for ‘Fabula’ in both years and ‘Atlantic’ in 2011. The ‘Red LaSoda’ consistently obtained lower yields under both drip treatments compared to SEP. Conversely, drip irrigation promoted significant reduction of the incidence of tuber physiological disorders such as brown center, hollow heart, and internal heat necrosis.

Resumen

La subirrigación por filtración es el sistema de riego más común para la producción de papa en Florida, que se respalda en el control de la lámina de agua para regar el cultivo. Se estableció un ensayo de dos años para evaluar la factibilidad de riego por goteo como una alternativa para el de filtración en la producción de papa. Se evaluaron los comportamientos de las variedades “Atlantic”, “Fabula” y “Red LaSoda”, mediante la comparación de la instalación de cinta de goteo a dos profundidades, en la superficie (SUR) y en la subsuperficie (SUB) con filtración (SEP). El rendimiento total de la papa en general fue de 25.3; 19.2 y 29.9 Mg ha−1 para SUR, SUB y SEP, respectivamente. Los tratamientos SUR y SEP tuvieron rendimientos similares para “Fabula” en ambos años y para “Atlantic” en 2011. En “Red LaSoda” se obtuvieron consistentemente más bajos rendimientos bajo ambos tratamientos de goteo en comparación con SEP. Por otro lado, el riego por goteo promovió reducción significativa en la incidencia de desórdenes fisiológicos del tubérculo, tales como el centro café, corazón hueco y la necrosis interna por calor.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Allen, R.G., L.S. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration: Guidelines for computing crop water requirements. Irrigation and Drainage Paper No. 56. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  2. Attaher, S.M., M.A. Medany, A.A. Abdel, and M.M. Mostafa. 2003. Energy requirements and yield of drip irrigated potato. Acta Horticulturae 608: 191–198.

    Article  Google Scholar 

  3. Bussan, A.J. 2007. The canon of potato science: Brown center and hollow heart. Potato Research 50: 395–398.

    Article  Google Scholar 

  4. Campbell, K.L., J.S. Rogers, and D.R. Hensel. 1978. Water table control for potatoes in Florida. Transactions of ASAE 21: 701–705.

    Article  Google Scholar 

  5. Christ, B.J. 1998. Identifying potato diseases in Pennsylvania. Penn State College of Agricultural Sciences. http://pubs.cas.psu.edu/FreePubs/pdfs/agrs75.pdf. Accessed 26 Nov 2013.

  6. Doorenbos, J., and W.O. Pruitt. 1977. Guidelines for predicting crop water requirements. Irrigation and Drainage Paper No. 24. Rome: FAO.

    Google Scholar 

  7. Dukes, M.D., L. Zotarelli, and K.T. Morgan. 2010. Use of irrigation technologies for vegetable crops in Florida. HortTecnology 20: 133–142.

    Google Scholar 

  8. Dukes, M.D., L. Zotarelli, G.D. Liu, and E.H. Simonne. 2012. Principles and practices of irrigation management for vegetables. Florida Cooperative Extension’s Electronic Data Information Source (EDIS), Univ. of Florida, Gainesville, FL. http://edis.ifas.ufl.edu/pdffiles/CV/CV10700.pdf. Accessed 26 Nov 2013.

  9. Eldredge, E.P., Z.A. Holmes, A.R. Mosley, C.C. Shock, and T.D. Stieber. 1996. Effects of transitory water stress on potato tuber stem-end and fry color. American Potato Journal 73: 517–531.

    Article  Google Scholar 

  10. Eldredge, E.P., C.C. Shock, and L.D. Saunders. 2003. Early and late harvest potato cultivar response to drip irrigation. Acta Horticulturae 619: 233–239.

    Article  Google Scholar 

  11. Gallaher, R.N., C.O. Weldon, and J.G. Futral. 1975. Aluminum block digester for plant and soil analysis. Soil Science Society of America Journal 39: 803–806.

    Article  Google Scholar 

  12. Gunel, E., and T. Karadogan. 1998. Effect of irrigation at different growth stages and length of irrigation period on quality characters of potato tubers. Potato Research 41: 9–19.

    Article  Google Scholar 

  13. Haman, D.Z., A.G. Smajstrla, F.S. Zazueta, and D.R. Hensel. 1989. Water recycling in seepage irrigation of potatoes. Special Publication SJ89-SP1. Palatka: St. Johns River Water Management District.

    Google Scholar 

  14. Hutchinson, C.M., J.M. White, and D.P. Weingartner. 2002. Chip potato varieties for commercial production in northeast Florida. Florida Cooperative Extension’s Electronic Data Information Source (EDIS), Univ. of Florida, Gainesville, FL. http://ufdc.ufl.edu/IR00001693/00001. Accessed 26 Nov 2013.

  15. Hutchinson, C.M., J.M. White, K.G. Haynes, D.M. Gergela, P.A. Solano, and C.S. Lippi. 2003. Red-skinned, fresh-market potato varieties for northeastern Florida production. HortTechnology 13(4): 702–706.

    Google Scholar 

  16. Hutchinson, C.M., D.M. Gergela, D.A. Dinkins, and E.E. Redden. 2006. ‘Harley Blackwell’ a new chip stock potato variety for Florida. Proceedings- Florida State Horticultural Society 119: 279–281.

  17. Jefferies, R.A., and D.K.L. MacKerron. 1987. Observations on the incidence of tuber growth cracking in relation to weather patterns. Potato Research 30(4): 613–623.

    Article  Google Scholar 

  18. Lamm, F.R., J.P. Bordovsky, L.J. Schwankl, G.L. Grawbow, J. Enciso-Medina, R.T. Peters, P.D. Colaizzi, T.P. Trooien, and D.O. Porter. 2011. Subsurface drip irrigation: Status of the technology in 2010. Transactions of the American Society of Agricultural and Biological Engineers 55: 483–491.

    Google Scholar 

  19. Livingston-Way, P. 2007. Development of a functional, widely accepted and adopted BMP program in response to government regulation. American Journal of Potato Research 84: 39–46.

    Article  Google Scholar 

  20. Locascio, S.J. 2005. Management of irrigation for vegetables: Past, present, and future. HortTechnology 15(3): 482–485.

    Google Scholar 

  21. Lynch, D.R., N. Foroud, G.C. Kozub, and B.C. Farries. 1995. The effect of moisture stress at three growth stages on the yield, components of yield and processing quality of eight potato varieties. American Potato Journal 72: 375–385.

    Article  Google Scholar 

  22. O’Dell, J.W. 1993. Determination of total Kjeldahl nitrogen by semi-automated colorimetry. U.S. Environmental Protection Agency. Cincinnati, Ohio. http://water.epa.gov/scitech/methods/cwa/bioindicators/upload/2007_07_10_methods_method_351_2.pdf. Accessed 26 Nov 2013.

  23. Ojala, J.C., J.C. Stark, and G.E. Kleinkopf. 1990. Influence of irrigation and nitrogen management on potato yield and quality. American Potato Journal 67: 29–43.

    Article  Google Scholar 

  24. Onder, S., M.E. Caliskan, D. Onder, and S. Caliskan. 2005. Different irrigation methods and water stress effects on potato yield and yield components. Agricultural Water Management 73: 73–86.

    Article  Google Scholar 

  25. Patel, N., and T.B. Rajput. 2007. Effect of drip tape placement depth and irrigation level on yield of potato. Agricultural Water Management 88: 209–223.

    Article  Google Scholar 

  26. Pereira, A.B.., and C.C. Shock. 2006. Development of irrigation best management practices for potato from a research perspective in the United States. Sakia.org e-publish 1: 1–20.

    Google Scholar 

  27. Phene, C.J., R.B. Campbell, and C.W. Doty. 1976. Characterization of soil aeration in situ with automated oxygen diffusion measurements. Soil Science 122: 271–281.

    Article  Google Scholar 

  28. Sands, P.J., C. Hackett, and H.A. Nix. 1979. A model of the development and bulking of potatoes (Solanum tuberosum L.) I. Derivation from well-managed field crops. Fields Crop Research 2: 309–331.

    Article  Google Scholar 

  29. SAS. 2009. The SAS System for Windows. Release 9.2. Cary: SAS Institute. Inc.

    Google Scholar 

  30. Shock, C.C. 2010. Water requirements and irrigation. In Commercial potato production in North America, ed. W.H. Bohl and S.B. Johnson, 54–56. Orono: The Potato Association of America.

    Google Scholar 

  31. Shock, C.C., A.B.. Pereira, and E.P. Eldredge. 2007. Irrigation best management practices for potato. American Journal of Potato Research 84: 29–37.

    Google Scholar 

  32. Shock, C.C., F-X. Wang, R. Flock, E.P. Eldredge, A.B.. Pereira, and J. Klauzer. 2013. Drip irrigation guide for potatoes, Sustainable agriculture techniques. Oregon State University Extension Service EM 8912, 8p. http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/43803/em8912.pdf?sequence=1. Accessed 26 Dec 2013.

  33. Simonne, E., N. Ouakrim, and A. Caylor. 2002. Evaluation of an irrigation scheduling model for drip-irrigated potato in southeastern United States. HortScience 37(1): 104–107.

    Google Scholar 

  34. Singleton, V. 1996. Benchmark farms project: water use report on leatherleaf fern and potatoes (1990–94) Technical publication SJ96-4. Palatka: St. Johns River Water Management District.

    Google Scholar 

  35. Smajstrla, A.G., S.J. Locascio, D.P. Weingartner, and D.R. Hensel. 2000. Subsurface drip irrigation for water table control and potato production. Applied Engineering in Agriculture 16: 225–229.

    Article  Google Scholar 

  36. Steele, D.D., R.G. Greenland, and H.M. Hatterman-Valenti. 2006. Furrow vs. hill planting of sprinkler-irrigated Russet Burbank potatoes on coarse-textured soils. American Journal of Potato Research 83: 249–257.

    Article  Google Scholar 

  37. U.S. Department of Agriculture. 1981. Soil survey of St. Johns County, Florida. Soil conservation service. Washington, DC: U.S. Department of Agriculture.

    Google Scholar 

  38. U.S. Department of Agriculture. 2011. United States standards for grades of potatoes. Washington, DC: U.S. Department of Agriculture.

    Google Scholar 

  39. U.S. Department of Agriculture. 2012. Crop values 2011 summary. Washington, DC: U.S. Department of Agriculture.

    Google Scholar 

  40. Waddell, J.T., S.C. Gupta, J.F. Moncrief, C.J. Rosen, and D.D. Steele. 1999. Irrigation and nitrogen-management effects on potato yield, tuber quality, and nitrogen uptake. Agronomy Journal 91: 991–997.

    Article  Google Scholar 

  41. Wang, F.X., Y. Kang, and S.P. Liu. 2006. Effects of drip irrigation frequency on soil wetting pattern and potato growth in North China Plain. Agricultural Water Management 79: 248–264.

    Article  Google Scholar 

  42. Webb, R.E., D.R. Wilson, J.R. Shumaker, B. Graves, M.R. Henninger, J. Watts, J.A. Frank, and H.J. Murphy. 1978. Atlantic: A new potato variety with high solids, good processing quality, and resistance to pests. American Potato Journal 55: 141–145.

    Article  Google Scholar 

  43. Westermann, D.T., T.A. Tindall, D.W. James, and R.L. Hurst. 1994. Nitrogen and potassium fertilization of potatoes: Yield and specific gravity. American Journal of Potato Research 71: 417–431.

    CAS  Article  Google Scholar 

  44. Yuan, B.Z., S. Nishiyama, and Y. Kang. 2003. Effects of different irrigation regimes on the growth and yield of drip irrigated potato. Agricultural Water Management 63: 153–167.

    Article  Google Scholar 

  45. Zotarelli, L., J.M. Scholberg, M.D. Dukes, R. Munoz-Carpena, and J. Icerman. 2009. Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agricultural Water Management 96: 23–34.

    Article  Google Scholar 

  46. Zotarelli, L., D. Gergela, C.M. Hutchinson, C.M., D. Dinkins, and E. Redden. 2013a. University of Florida potato variety spot light: Red LaSoda. Florida Cooperative Extension’s Electronic Data Information Source (EDIS), University of Florida, Gainesville, FL. http://edis.ifas.ufl.edu/hs323. Accessed 26 Nov 2013.

  47. Zotarelli, L., B.M. Santos, P.J. Dittmar, P.D. Roberts, S.E. Webb. 2013b. Potato production. IFAS HS733. Gainesville: University of Florida Institute of Food and Agricultural Sciences, 2013. http://edis.ifas.ufl.edu/pdffiles/CV/CV13100.pdf. Accessed 27 Jan 2013.

Download references

Acknowledgments

The authors would like to thank the Florida Department of Agriculture and Consumer Services (FDACS) for funding this project. We also acknowledge the support of the North Florida Potato Growers Association, UF/IFAS Florida Partnership for Water, Agriculture and Community Sustainability at Hastings, St. Johns River Water Management District, in especially Danny Johns, Christopher Johns, Scott Taylor, Dr. Daniel Cantliffe, Pam Livinston Way and Vince Singleton. We appreciate the field and laboratory assistance of Danny Burch, Douglas Gergela, Patrick Moran, Marcelo Paranhos, Libby Rens, Charles Barrett, Bart Herrington, Chad Collins, Dana Fourman, Hugh Burnham, Thaddis Merrick, and Dario Ramirez.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Zotarelli.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reyes-Cabrera, J., Zotarelli, L., Rowland, D.L. et al. Drip as Alternative Irrigation Method for Potato in Florida Sandy Soils. Am. J. Potato Res. 91, 504–516 (2014). https://doi.org/10.1007/s12230-014-9381-0

Download citation

Keywords

  • Microirrigation
  • Seepage irrigation
  • Fresh-market potato
  • Chipping potato
  • Tuber physiological disorders
  • Sandy soils