Skip to main content

Assessing Potato Psyllid Haplotypes in Potato Crops in the Pacific Northwestern United States


The potato psyllid, Bactericera cockerelli (Šulc), is a vector of the bacterium ‘Candidatus Liberibacter solanacearum’ (Lso) that has been linked to the economically devastating zebra chip disease of potato. To date, four haplotypes of the potato psyllid have been identified and include Central, Western, Northwestern, and Southwestern haplotypes. Zebra chip was reported in potato crops in the Pacific Northwestern United States for the first time in 2011, and the Lso-infected psyllids collected from zebra chip-affected fields were identified as the Western haplotype. Additional studies have reported a mix of the Western and Northwestern psyllid haplotypes in the Pacific Northwest. The present study further examined psyllid population dynamics over the duration of the 2012 potato season in the Pacific Northwest by haplotype analysis of 864 potato psyllids collected from potato fields in Washington, Oregon, and Idaho. In the Yakima Valley of Washington and the lower Columbia Basin of Washington and Oregon, the Northwestern haplotype was predominant (78 %), and was detected earlier in the season than the Western haplotype. Interestingly, in south-central Idaho, all four psyllid haplotypes were identified, but the predominant haplotype was the Western haplotype (77 %). Here, Northwestern psyllids were detected early in the season from June to mid-August, whereas Central psyllids were detected in late July and thereafter. These results suggest that haplotype composition of psyllid populations in potato fields throughout the 2012 growing season in south-central Idaho differed greatly from those in Washington and Oregon. Additionally, all psyllids were analyzed for the presence of Lso, and no Lso-positive psyllids were found in Washington and Oregon, whereas Lso-positive psyllids were found in south-central Idaho. These Lso-positive psyllids consisted of the Western, Northwestern, and Central haplotypes.


El psílido de la papa, Bactericera cockerelli (Šulc), es un vector de la bacteria ‘Candidatus Liberibacter solanacearum’ (Lso) que se ha asociado con la enfermedad económicamente devastadora del rayado del tubérculo (zebra chip) de la papa. A la fecha se han identificado cuatro haplotipos del psílido de la papa, que incluye a los de la parte Central, Oeste, Noroccidental y Suroccidental. La zebra chip se reportó en cultivos de papa en el Pacífico Noroccidental de los EUA por primera vez en 2011, y los psílidos infectados con Lso de campos afectados por zebra chip se identificaron como el haplotipo del Oeste. Estudios adicionales han reportado una mezcla de haplotipos del psílido del Oeste y Noroccidental en el Pacífico Noroccidental. El presente estudio examinó aún más la dinámica poblacional del psílido durante la duración del ciclo de cultivo de 2012 de la papa en el Pacífico Noroccidental mediante el análisis de los haplotipos de 864 psílidos colectados de campos de papa en Washington, Oregon y Idaho. El haplotipo Noroccidental fue predominante (78 %) en el Valle de Yakima de Washington y en la ribera baja del Columbia de Washington y Oregon, y se detectó más temprano durante el ciclo que el haplotipo del Oeste. Llama la atención que en el centro sur de Idaho se identificaron los cuatro haplotipos del psílido, pero el predominante fue el del Oeste (77 %). Aquí, los psílidos del Noroccidente se detectaron temprano en el ciclo, de junio a mediados de agosto, mientras que los psílidos Centrales se detectaron desde finales de julio en adelante. Estos resultados sugieren que la composición de haplotipos de las poblaciones del psílido en los campos de papa a lo largo del ciclo de cultivo de 2012 en el centro sur de Idaho fue diferente en gran medida a la de Washington y Oregon. Además, todos los psílidos se analizaron para la presencia de Lso, y no se encontraron positivos en Washington y Oregon, mientras que los Lso-positivos se encontraron en el centro sur de Idaho. Estos psílidos Lso-positivos consistieron de los haplotipos del Oeste, Noroccidental y Central.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. Chapman, R.I., J.F. Macias-Velasco, A.P. Arp, and B. Bextine. 2012. Using quantitative real time PCR melt curve analysis of partial CO1 sequence for rapid biotype differentiation of Bactericera cockerelli (Hemiptera: Triozidae). Southwestern Entomologist 37: 475–484.

    Article  Google Scholar 

  2. Crosslin, J.M., J.E. Munyaneza, J.K. Brown, and L.W. Liefting. 2010. Potato zebra chip disease: a phytopathological tale. Online. Plant Health Progress. doi:10.1094/PHP-2010-0317-01-RV.

    Google Scholar 

  3. Crosslin, J.M., H. Lin, and J.E. Munyaneza. 2011. Detection of ‘Candidatus Liberibacter solanacearum’ in potato psyllids, Bactericera cockerelli Sulc, by conventional and real-time PCR. Southwestern Entomologist 36: 125–135.

    Article  Google Scholar 

  4. Crosslin, J.M., N. Olsen, and P. Nolte. 2012a. First report of zebra chip disease and “Candidatus Liberibacter solanacearum” on potatoes in Idaho. Plant Disease 96: 453.

    Article  Google Scholar 

  5. Crosslin, J.M., P.B. Hamm, J.E. Eggers, S.I. Rondon, V.G. Sengoda, and J.E. Munyaneza. 2012b. First report of zebra chip disease and “Candidatus Liberibacter solanacearum” on potatoes in Oregon and Washington. Plant Disease 96: 452.

    Article  Google Scholar 

  6. Hu, X., T. Meacham, L. Ewing, S.M. Gray, and A.V. Karasev. 2009. A novel recombinant strain Potato Virus Y suggests a new viral genetic determinant of vein necrosis in tobacco. Virus Research 143: 68–76.

    CAS  Article  PubMed  Google Scholar 

  7. Liefting, L.W., Z.C. Perez-Egusquiza, G.R.G. Clover, and J.A.D. Anderson. 2008. A new ‘Candidatus Liberibacter’ species in Solanum tuberosum in New Zealand. Plant Disease 92: 1474.

    Article  Google Scholar 

  8. Liu, D., J.T. Trumble, and R. Stouthamer. 2006. Genetic differentiation between eastern populations and recent introductions of potato psyllid (Bactericera cockerelli) into western North America. Entomologia Experimentalis Applicata 118: 177–183.

    CAS  Article  Google Scholar 

  9. Munyaneza, J.E. 2010. Psyllids as vectors of emerging bacterial diseases of annual crops. Southwestern Entomologist 35: 471–477.

    Article  Google Scholar 

  10. Munyaneza, J.E. 2012. Zebra chip disease of potato: biology, epidemiology, and management. American Journal of Potato Research 89: 329–350.

    Article  Google Scholar 

  11. Munyaneza, J.E., J.M. Crosslin, and J.E. Upton. 2007. Association of Bactericera cockerelli (Homoptera: Psyllidae) with “Zebra Chip”, a new potato disease in Southwestern United States and Mexico. Journal of Economic Entomology 100: 656–663.

    CAS  PubMed  Google Scholar 

  12. Murphy, A.F., S.I. Rondon, and A.S. Jensen. 2013. First report of potato psyllids, Bactericera cockerelli, overwintering in the Pacific Northwest. American Journal of Potato Research 90: 294–296.

    Article  Google Scholar 

  13. National Agricultural Statistics Services. 2012. Potatoes 2011 Summary (September 2012). United States Department of Agriculture.

  14. Nelson, W.R., T.W. Fisher, and J.E. Munyaneza. 2011. Haplotypes of “Candidatus Liberibacter solanacearum” suggest long-standing separation. European Journal of Plant Pathology 130: 5–12.

    Article  Google Scholar 

  15. Rondon, S., A. Schreiber, A. Jensen, P. Hamm, J. Munyaneza, P. Nolte, N. Olsen, E. Wenninger, D. Henne, C. Wohleb, and T. Waters. 2012. Potato psyllid vector of zebra chip disease in the Pacific Northwest: Biology, ecology, and management. PNW Extension Publication 633: 1–8.

    Google Scholar 

  16. Swisher, K.D., J.E. Munyaneza, and J.M. Crosslin. 2012. High resolution melting analysis of the cytochrome oxidase I gene identifies three haplotypes of the potato psyllid in the United States. Environmental Entomology 41: 1019–1028.

    CAS  Article  Google Scholar 

  17. Swisher, K.D., J.E. Munyaneza, and J.M. Crosslin. 2013a. Temporal and spatial analysis of potato psyllid haplotypes in the United States. Environmental Entomology 42: 381–393.

    CAS  Article  PubMed  Google Scholar 

  18. Swisher, K.D., A.P. Arp, B.R. Bextine, E.Y. Aguilar Álvarez, J.M. Crosslin, and J.E. Munyaneza. 2013b. Haplotyping the potato psyllid, Bactericera cockerelli, in Mexico and Central America. Southwestern Entomologist 38: 201–208.

    Article  Google Scholar 

  19. Swisher, K.D., V.G. Sengoda, J. Dixon, E. Echegaray, A.F. Murphy, S.I. Rondon, J.E. Munyaneza, and J.M. Crosslin. 2013c. Haplotypes of the potato psyllid, Bactericera cockerelli, on the wild host plant, Solanum dulcamara, in the Pacific Northwestern United States. American Journal of Potato Research 90: 570–577.

    CAS  Article  Google Scholar 

  20. Swisher, K.D., D.C. Henne, and J.M. Crosslin. 2014. Identification of a fourth haplotype of the potato psyllid, Bactericera cockerelli, in the United States. Journal of Insect Science (In press).

  21. Wen, A., C. Johnson, and N.C. Gudmestad. 2013. Development of a PCR assay for the rapid detection and differentiation of ‘Candidatus Liberibacter solanacearum’ haplotypes and their spatiotemporal distribution in the United States. American Journal of Potato Research 90: 229–236.

    CAS  Article  Google Scholar 

Download references


We thank Millie Heidt, Francisco de la Rosa, Sawyer Delp, Sahar Eid, Cheryn Clayton, Neyle Perdomo, Amy Carroll, Vince Adamson, Megan Williams, and Carlie Wilkins for their technical assistance in the field and laboratory. Financial support for this research was provided by the Washington State Potato Commission, the Idaho Potato Commission, the Idaho State Department of Agriculture, USDA-SCRI Project # 2009-51181-20176 and USDA-RAMP Project # 2009-51101-05892. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the United States Department of Agriculture or the Agricultural Research Service of any product or service to the exclusion of others that may be suitable. USDA is an equal opportunity provider and employer.

Author information



Corresponding author

Correspondence to Joseph E. Munyaneza.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Swisher, K.D., Sengoda, V.G., Dixon, J. et al. Assessing Potato Psyllid Haplotypes in Potato Crops in the Pacific Northwestern United States. Am. J. Potato Res. 91, 485–491 (2014).

Download citation


  • Potato diseases
  • Psyllid haplotypes
  • Liberibacter