Haplotypes of the Potato Psyllid, Bactericera cockerelli, on the Wild Host Plant, Solanum dulcamara, in the Pacific Northwestern United States

Abstract

‘Candidatus Liberibacter solanacearum’ (Lso) is a bacterium that infects solanaceous crops and causes plant decline and yield losses, especially in potato and tomato. Lso is transmitted to these hosts by the potato psyllid (Bactericera cockerelli Sulc) vector. B. cockerelli host plants are not limited to crop plants, but also include many wild, solanaceous weeds. These wild hosts could potentially impact overwintering and breeding of the psyllids and serve as reservoirs for Lso. In the Pacific Northwestern United States, B. cockerelli was recently reported to overwinter on bittersweet nightshade (Solanum dulcamara L.). The present study utilized high resolution melting analysis of the B. cockerelli mitochondrial cytochrome c oxidase I gene to assess the psyllid populations occurring on S. dulcamara during the summer and winter months in Washington, Oregon, and Idaho. This technique has previously been used to analyze the cytochrome c oxidase I gene of B. cockerelli, and has identified four psyllid haplotypes. Lso infection was also determined for the psyllids collected from S. dulcamara. During both the summer and the winter months in the Pacific Northwest, the Northwestern psyllid haplotype was the predominant population found living on S. dulcamara. However, low levels of the Western psyllid population were also present in Washington and Oregon during the same period. No overwintering psyllids tested were Lso-infected, suggesting that these populations do not pose an imminent threat of Lso transmission to newly emerging potatoes and other solanaceous crops in the region, unless a source of Lso becomes available.

Resumen

‘Candidatus Liberibacter solanacearum’ (Lso) es una bacteria que infecta a cultivos de solanáceas y causa abatimiento y pérdida de cosechas, especialmente en papa y tomate. Lso se transmite a estos hospedantes por el vector psílido de la papa (Bactericera cockerelli Sulc). Las plantas hospederas de B. cockerelli no se limitan a especies cultivadas, sino que también incluyen muchas malezas silvestres solanáceas. Estas hospedantes silvestres pudieran impactar potencialmente la invernación y apareamiento de los psílidos y servir como reservorios para Lso. En el Noroeste del Pacífico de los Estados Unidos de América se ha reportado recientemente a B. cockerelli invernando en la planta “uva del diablo”, “dulcamara” o “matagallinas” (Solanum dulcamara L.). En el presente estudio se utilizó un análisis de fusión de alta resolución del gen mitocondrial del citocromo c oxidasa de B. cockerelli para analizar las poblaciones del psílido que se presentan en S. dulcamara durante los meses del verano e invierno en Washington, Oregon y Idaho. Se ha utilizado previamente esta técnica para analizar el gen mencionado, y ha identificado cuatro haplotipos del psílido. También se determinó la infección por Lso en psílidos colectados de S. dulcamara. Durante los meses de verano e invierno en el Pacífico del Noroeste, el haplotipo del psílido del Noroeste era la población dominante que se encontraba viviendo en S. dulcamara. No obstante, también se encontraba, aunque en bajos niveles de la población, el psílido del Oeste en Washington y Oregon durante el mismo período. Psílidos no invernantes probados estaban infectados de Lso, sugiriendo que estas poblaciones no representan una amenaza inminente de transmisión de Lso a papas de nueva emergencia y a otros cultivos de solanáceas en la región, a menos que una fuente de Lso estuviera disponible.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Al-Jabar, A. 1999. Integrated pest management of tomato/potato psyllid, Paratrioza cockerelli (Sulc) (Homoptera: Psyllidae) with emphasis on its importance in greenhouse grown tomatoes. PhD dissertation, Colorado State University, Fort Collins, Colorado.

  2. Chapman, R.I., J.F. Macias-Velasco, A.P. Arp, and B. Bextine. 2012. Using quantitative real time PCR melt curve analysis of partial CO1 sequence for rapid biotype differentiation of Bactericera cockerelli (Hemiptera: Triozidae). Southwestern Entomologist 37: 475–484.

    Article  Google Scholar 

  3. Crosslin, J.M., G.J. Vandemark, and J.E. Munyaneza. 2006. Development of a real-time, quantitative PCR for detection of the Columbia Basin potato purple top phytoplasma in plants and beet leafhoppers. Plant Disease 90: 663–667.

    CAS  Article  Google Scholar 

  4. Crosslin, J.M., H. Lin, and J.E. Munyaneza. 2011. Detection of ‘Candidatus Liberibacter solanacearum’ in the potato psyllid, Bactericera cockerelli (Sulc), by conventional and real-time PCR. Southwestern Entomologist 36: 125–135.

    Article  Google Scholar 

  5. Crosslin, J.M., P.B. Hamm, J.E. Eggers, S.I. Rondon, V.G. Sengoda, and J.E. Munyaneza. 2012a. First report of zebra chip disease and “Candidatus Liberibacter solanacearum” on potatoes in Oregon and Washington. Plant Disease 96: 452.

    Article  Google Scholar 

  6. Crosslin, J.M., N. Olsen, and P. Nolte. 2012b. First report of zebra chip disease and “Candidatus Liberibacter solanacearum” on potatoes in Idaho. Plant Disease 96: 453.

    Article  Google Scholar 

  7. Hansen, A.K., J.T. Trumble, R. Stouthamer, and T.D. Paine. 2008. A new Huanglongbing species, “Candidatus Liberibacter psyllaurous”, found to infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sulc). Applied and Environmental Microbiology 74: 5862–5865.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  8. Liefting, L.W., Z.C. Perez-Egusquiza, G.R.G. Clover, and J.A.D. Anderson. 2008a. A new ‘Candidatus Liberibacter’ species in Solanum tuberosum in New Zealand. Plant Disease 92: 1474.

    Article  Google Scholar 

  9. Liefting, L.W., L.I. Ward, J.B. Shiller, and G.R.G. Clover. 2008b. A new ‘Candidatus Liberibacter’ species in Solanum betaceum (Tamarillo) and Physalis peruviana (Cape Gooseberry) in New Zealand. Plant Disease 92: 1588.

    Article  Google Scholar 

  10. Liefting, L.W., P.W. Sutherland, L.I. Ward, K.L. Paice, B.S. Weir, and G.R.G. Clover. 2009a. A new ‘Candidatus Liberibacter’ species associated with diseases of solanaceous crops. Plant Disease 93: 208–214.

    CAS  Article  Google Scholar 

  11. Liefting, L.W., B.S. Weir, S.R. Pennycook, and G.R.G. Clover. 2009b. ‘Candidatus Liberibacter solanacearum’, associated with plants in the family Solanaceae. International Journal of Systematic and Evolutionary Microbiology 59: 2274–2276.

    CAS  Article  PubMed  Google Scholar 

  12. Liu, D., J.T. Trumble, and R. Stouthamer. 2006. Genetic differentiation between eastern populations and recent introductions of potato psyllid (Bactericera cockerelli) into western North America. Entomologia Experimentalis et Applicata 118: 177–183.

    CAS  Article  Google Scholar 

  13. Munyaneza, J.E. 2010. Psyllids as vectors of emerging bacterial diseases of annual crops. Southwestern Entomologist 35: 471–477.

    Article  Google Scholar 

  14. Munyaneza, J.E. 2012. Zebra chip disease of potato: biology, epidemiology, and management. American Journal of Potato Research 89: 329–350.

    Article  Google Scholar 

  15. Munyaneza, J.E., J.M. Crosslin, and J.E. Upton. 2007. Association of Bactericera cockerelli (Homoptera: Psyllidae) with “Zebra Chip”, a new potato disease in Southwestern United States and Mexico. Journal of Economic Entomology 100: 656–663.

    CAS  PubMed  Google Scholar 

  16. Munyaneza, J.E., J.M. Crosslin, and J.L. Buchman. 2009. Seasonal occurrence and abundance of the potato psyllid, Bactericera cockerelli, in south central Washington. American Journal of Potato Research 86: 513–518.

    Article  Google Scholar 

  17. Murphy, A.F., S.I. Rondon, and A.S. Jensen. 2013. First report of potato psyllids, Bactericera cockerelli, overwintering in the Pacific Northwest. American Journal of Potato Research. 90: 294–296. doi:10.1007/s12230-012-9281-0.

    Google Scholar 

  18. National Agricultural Statistics Services. 2012. Potatoes 2011 Summary (September 2012). United States Department of Agriculture. http://usda01.library.cornell.edu/usda/current/Pota/Pota-09-20-2012.pdf.

  19. Pletsch, D.J. 1947. The potato psyllid Paratrioza cockerelli (Sulc) its biology and control. Mont. Ag. Exp. Stat. Bull. 446: 95pp. Montana State College Agriculture Experiment Station, Bozeman, Montana.

  20. Secor, G.A., and V.V. Rivera-Varas. 2004. Emerging diseases of cultivated potato and their impact on Latin America. Revista Latinoamericana de la Papa (Suppl.) 1: 1–8.

    Google Scholar 

  21. Secor, G.A., V.V. Ribera, J.A. Abad, I.-M. Lee, G.R.G. Clover, L.W. Liefting, X. Li, and S.H. De Boer. 2009. Association of ‘Candidatus Liberibacter solanacearum’ with zebra chip disease of potato established by graft and psyllid transmission, electron microscopy, and PCR. Plant Disease 93: 574–583.

    CAS  Article  Google Scholar 

  22. Swisher, K.D., J.E. Munyaneza, and J.M. Crosslin. 2012. High resolution melting analysis of the cytochrome oxidase I gene identifies three haplotypes of the potato psyllid in the United States. Environmental Entomology 41: 1019–1028.

    CAS  Article  Google Scholar 

  23. Swisher, K.D., J.E. Munyaneza, and J.M. Crosslin. 2013a. Temporal and spatial analysis of potato psyllid haplotypes in the United States. Environmental Entomology 42: 381–393.

    CAS  Article  PubMed  Google Scholar 

  24. Swisher, K.D., D.C. Henne, and J.M. Crosslin. 2013b. Identification of a fourth haplotype of the potato psyllid, Bactericera cockerelli, in the United States. Journal of Insect Science (In press).

  25. Swisher K.D., A.P. Arp, B.R. Bextine, E.Y. Aguilar Álvarez, J.M. Crosslin, and J.E. Munyaneza. 2013c. Haplotyping the potato psyllid, Bactericera cockerelli, in Mexico and Central America. Southwestern Entomologist 38: 201–208.

  26. Thomas, K.L., D.C. Jones, L.B. Kumarasinghe, J.E. Richmond, G.S.C. Gill, and M.S. Bullians. 2011. Investigation into the entry pathway for tomato potato psyllid Bactericera cockerelli. New Zealand Plant Protection 64: 259–268.

    Google Scholar 

  27. Wallis, R.L. 1955. Ecological studies on the potato psyllid as a pest of potatoes. United States Department of Agriculture Technical Bulletin 1107. Washington, D.C.

  28. Wen, A., I. Mallik, V.Y. Alvarado, J.S. Pasche, X. Wang, W. Li, L. Levy, H. Lin, H.B. Scholthof, T.E. Mirkov, C.M. Rush, and N.C. Gudmestad. 2009. Detection, distribution, and genetic variability of ‘Candidatus Liberibacter’ species associated with zebra complex disease of potato in North America. Plant Disease 93: 1102–1115.

    CAS  Article  Google Scholar 

  29. Wen, A. X. Wang, R.M. Harveson, J.D. Bradshaw, and N.C. Gudmestad. 2010. Frequency of “Candidatus Liberibacter solanacearum” in potato psyllid and solanaceous weeds. Proceedings of the 10 th Annual Zebra Chip Reporting Session 7–10 November 2010. Texas AgriLife, College Station, TX.

  30. Yang, X.-B., and T.-X. Liu. 2009. Life history and life tables of Bactericera cockerelli (Homoptera: Psyllidae) on eggplant and bell pepper. Environmental Entomology 38: 1661–1667.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Andrew Jensen for kindly providing us with the Idaho potato psyllids. Additionally, we would like to thank Millie Heidt, Francisco de la Rosa, and Sawyer Delp for their technical assistance. Financial support for this research was provided by the Washington State Potato Commission, the USDA-SCRI Project # 2009-51181-20176 and the USDA-RAMP Project # 2009-51101-05892. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the United States Department of Agriculture or the Agricultural Research Service of any product or service to the exclusion of others that may be suitable. USDA is an equal opportunity provider and employer.

Author information

Affiliations

Authors

Corresponding author

Correspondence to James M. Crosslin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Swisher, K.D., Sengoda, V.G., Dixon, J. et al. Haplotypes of the Potato Psyllid, Bactericera cockerelli, on the Wild Host Plant, Solanum dulcamara, in the Pacific Northwestern United States. Am. J. Potato Res. 90, 570–577 (2013). https://doi.org/10.1007/s12230-013-9330-3

Download citation

Keywords

  • Potato diseases
  • Liberibacter
  • Psyllid haplotypes
  • Nightshade