American Journal of Potato Research

, Volume 90, Issue 5, pp 460–469 | Cite as

Starch Characteristics of Modern and Heirloom Potato Cultivars

  • Diego Fajardo
  • Kathleen G. Haynes
  • Shelley Jansky


In a number of ways, modern potato breeding efforts differ from those that created heirloom cultivars. As a result of the rapid expansion of the potato processing industry in the mid twentieth century, potato breeders shifted their focus from fresh market varieties to those intended for the fry and chip markets. Selection for higher dry matter content and lower reducing sugar levels in tubers was successful. This study sought to determine whether modern processing cultivars differ from heirloom cultivars for two major characteristics of tuber starch, amylose content and starch granule morphology. Since breeding efforts for processing potatoes have focused on the maintenance of tuber quality during storage, these parameters were measured in both fresh and stored tubers. Twenty cultivars selected to span the range of cultivar release dates in the U.S. were grown at Hancock, WI in 2009 and 2010 and evaluated for tuber amylose content and measurements of starch granule surface area, length, width, length to width ratio, and smoothness. These traits were found to be stable across years and during storage. Significant differences in the amylose content and starch granule morphology exist among cultivars, but there is no clear distinction between modern and heirloom cultivars. Genetic variation for amylose content and starch granule morphology was found within the set of clones sampled for this study. However, germplasm with higher amylose content will need to be identified and utilized in breeding if the nutritional benefits associated with high fiber and low glycemic index are to be realized.


Starch Solanum tuberosum Resistant starch Mealiness Amylose Amylopectin 


De diferentes maneras los esfuerzos modernos en el mejoramiento de la papa difieren de aquellos que crearon las variedades clásicas. Como resultado de la rápida expansión de la industria del procesado de la papa a mediados del siglo veinte, los fitomejoradores de la papa se reenfocaron de variedades de mercado fresco a aquellas para mercado de las frituras. La selección para alto contenido de materia seca y bajos niveles de azúcares reductores en tubérculos fue exitosa. Este estudio buscó determinar si las variedades modernas para procesamiento difieren de las clásicas en dos características principales de almidón en el tubérculo, contenido de amilosa y morfología del gránulo de almidón. Considerando que los esfuerzos de mejoramiento para papa de proceso se ha enfocado en el mantenimiento de la calidad el tubérculo durante el almacenamiento, se midieron estos parámetros tanto en tubérculos frescos como en almacenados. Se sembraron veinte variedades para aclarar la amplitud de fechas de liberación de variedades en los EUA en Hancock, WI, en 2009 y 2010 y se evaluaron para el contenido de amilosa en el tubérculo y se hicieron mediciones del área de la superficie del gránulo de almidón, longitud, ancho, la relación largo-ancho, y la suavidad. Se encontró que estos caracteres eran estables a lo largo de los años y durante el almacenamiento. Existen diferencias significativas en el contenido de amilosa y en la morfología del gránulo de almidón entre variedades, pero no hay una distinción clara entre las variedades modernas y las clásicas. Se encontró variación genética en el contenido de amilosa y para la morfología del gránulo de almidón entre el juego de clones muestreado para este estudio. No obstante, el germoplasma con el mas alto contenido de amilosa requerirá ser identificado y utilizado en mejoramiento si se consideran los beneficios nutrimentales asociados con alta fibra y bajo índice glicémico.



Tuber samples were generously provided by Dr. Jed Colquhoun, Department of Horticulture, University of Wisconsin-Madison. Partial funding for the senior author’s salary was provided by the ARS Research Associate Program and the Crop germplasm Committee of the National Plant Germplasm System.


  1. Atkin, N.J., S.L. Cheng, R.M. Abeysekera, and A.W. Robards. 1999. Localisation of amylose and amylopectin in starch granules using enzyme-gold labelling. Starch-Starke 51: 163–172.CrossRefGoogle Scholar
  2. Barichello, V., R. Yada, R. Coffin, and D. Stanley. 1990. Low temperature sweetening in susceptible and resistant potatoes: Starch structure and composition. Journal of Food Science 55: 1054–1059.CrossRefGoogle Scholar
  3. Barichello, V., R. Yada, and R.H. Coffin. 1991. Starch properties of various potato (Solanum tuberosum L) cultivars susceptible and resistant to low temperature sweetening. Journal of the Science of Food and Agriculture 56: 385–397.CrossRefGoogle Scholar
  4. Barrios, E.P.P., D.W. Newsom, and J.C. Miller. 1963. Some factors influencing the culinary quality of Irish potatoes II. Physical characters. American Potato Journal 40: 200–208.CrossRefGoogle Scholar
  5. Behall, K.M., and J. Hallfrisch. 2002. Plasma glucose and insulin reduction after consumption of breads varying in amylose content. European Journal of Clinical Nutrition 56: 913–920.PubMedCrossRefGoogle Scholar
  6. Behall, K.M., D. Scholfield, I. Yuhaniak, and J. Canary. 1989. Diets containing high amylose vs amylopectin starch: Effects on metabolic variables in human subjects. The American Journal of Clinical Nutrition 49: 337–344.PubMedGoogle Scholar
  7. Bradshaw, J.E., and G. Ramsay. 2005. Utilisation of the commonwealth potato collection in potato breeding. Euphytica 146: 9–19.CrossRefGoogle Scholar
  8. Briant, A.M., C.J. Personius, and E.G. Cassel. 1945. Physical properties of starch from potatoes of different culinary quality. Food Research 10: 437–444.CrossRefGoogle Scholar
  9. Camire, M.E., S. Kubow, and D.J. Donnelly. 2009. Potatoes and human health. Critical Reviews in Food Science and Nutrition 49: 823–840.PubMedCrossRefGoogle Scholar
  10. Christensen, D.H., and M.H. Madsen. 1996. Changes in potato starch quality during growth. Potato Research 39: 43–50.CrossRefGoogle Scholar
  11. Cottrell, J.E., C.M. Duffus, G.R. MacKay, and M.J. Allison. 1993. Changes in the surface morphology of starch granules of the cultivated potato, Solanum tuberosum L. During storage. Potato Research 36: 119–125.Google Scholar
  12. Cottrell, J.E.J.E., C.M.C.M. Duffus, L. Paterson, and G.R.G.R. Mackay. 1995. Properties of potato starch: Effects of genotype and growing conditions. Phytochemistry 40: 1057–1064.CrossRefGoogle Scholar
  13. Douches, D.S.S., D. Maas, K.R. Jartrzebski, R.W. Chase, and K. Jastrzebski. 1996. Assessment of potato breeding progress in the USA over the last century. Crop Science 36: 1544–1552.CrossRefGoogle Scholar
  14. Fajardo, D., S. Jayanty, and S. Jansky. 2013. Rapid high throughput amylose determination in freeze dried potato tuber samples. Journal of Visualized Experiments In press.Google Scholar
  15. Fernandes, G., A. Velangi, and T.M.S. Wolever. 2005. Glycemic index of potatoes commonly consumed in North America. Journal of the American Dietetic Association 105: 557–562.PubMedCrossRefGoogle Scholar
  16. Geddes, R., C. Greenwood, and S. MacKenzie. 1965. Studies on the biosynthesis of starch granules Part III. The properties of the components of starches from the growing potato tuber. Carbohydrate Research 1: 71–82.CrossRefGoogle Scholar
  17. Groza, H.I., B.D. Bowen, W.R. Stevenson, J.R. Sowokinos, M.T. Glynn, C. Thill, S.J. Peloquin, A.J. Bussan, and J. Jiang. 2006. White Pearl—a chipping potato variety with high level of resistance to cold sweetening. American Journal of Potato Research 83: 259–267.CrossRefGoogle Scholar
  18. Haase, N.U., and J. Plate. 1996. Properties of potato starch in relation to varieties and environmental factors. Starch-Starke 48: 167–171.CrossRefGoogle Scholar
  19. Hawkes, J. 1945. The indigenous American potatoes and their value in plant breeding. Empire Journal of Experimental Agriculture 13: 11–40.Google Scholar
  20. Hawkes, J.G. 1958. Significance of wild species and primitive forms for potato breeding. Euphytica 7: 257–270.Google Scholar
  21. Hofvander, P., M. Andersson., and C. Larsson 2004. Field performance and starch characteristics of high-amylose potatoes obtained by antisense gene targeting gene targeting of two branching enzymes. Plant Biotechnology Journal 2: 311–320.Google Scholar
  22. Holland, J., W. Nyquist, and C. Cervantes_Martinez. 2003. Estimating and interpreting heritability for plant breeding. Plant Breeding Reviews 22: 9–112.Google Scholar
  23. Holt, S.H., and J.B. Miller. 1995. Increased insulin responses to ingested foods are associated with lessened satiety. Appetite 24: 43–54.PubMedCrossRefGoogle Scholar
  24. Hoover, R. 2001. Composition, molecular structure, and physicochemical properties of tuber and root starches: A review. Carbohydrate Polymers 45: 253–267.CrossRefGoogle Scholar
  25. Hovenkamp-Hemerlink, J.H.M., J.N. de Vries, P. Adamse, E. Jacobsen, B. Witholt, and W.J. Feenstra. 1988. Rapid estimation of the amylose/amylopectin ratio in small amounts of tuber and leaf tissue of the potato. Potato Research 31: 241–246.Google Scholar
  26. Jansen, G., W. Flamme, K. Schüler, M. Vandrey, and K. Schuler. 2001. Tuber and starch quality of wild and cultivated potato species and cultivars. Potato Research 44: 137–146.CrossRefGoogle Scholar
  27. Johnston, F., B. Urbas, and G. Khanzada. 1968. Effect of storage on the size distribution and amylose/amylopectin ratio in potato starch granules. American Potato Journal 45: 315–321.CrossRefGoogle Scholar
  28. Kang, M.S. 1989. A new SAS program for calculating stability-variance parameters. The Journal of Heredity 80: 415.Google Scholar
  29. Kang, M.S. 2003. Ecovariance and stability variance. In: Handbook of formulas and software for plant geneticists and breeders, ed. M.S. Kang, 123–128. Binghamton, NY: The Haworth Press.Google Scholar
  30. Knapp, S., W. Stroup, and W. Ross. 1985. Exact confidence intervals for heritability on a progeny mean basis. Crop Science 25: 192–194.CrossRefGoogle Scholar
  31. Labuschagne, M.T., N. Geleta, and G. Osthoff. 2007. The influence of environment on starch content and amylose to amylopectin ratio in wheat. Starch-Starke 59: 234–238.CrossRefGoogle Scholar
  32. Li, X.-Q., J. Zhang, S. Luo, G. Liu, A. Murphy, Y. Leclerc, and T. Xing. 2011. Effects of sampling methods on starch granule size measurement of potato tubers under a light microscope. International Journal of Plant Biology 2(1): e5.CrossRefGoogle Scholar
  33. Love, S.L., J.J. Pavek, A. Thompson-Johns, and W. Bohl. 1998. Breeding progress for potato chip quality in North American cultivars. American Journal of Potato Research 75: 27–36.CrossRefGoogle Scholar
  34. McComber, D.R.D., H.T.H. Horner, M.A. Chamberline, D.F.D. Cox, and M. Chamberlin. 1994. Potato cultivar differences associated with mealiness. Journal of Agricultural and Food Chemistry 42: 2433–2439.CrossRefGoogle Scholar
  35. Noda, T., S. Takigawa, C. Matsuura-Endo, S.-J. Kim, N. Hashimoto, H. Yamauchi, I. Hanashiro, and Y. Takeda. 2005. Physicochemical properties and amylopectin structures of large, small, and extremely small potato starch granules. Carbohydrate Polymers 60: 245–251.CrossRefGoogle Scholar
  36. Plaisted, R.L., and R.W. Hoopes. 1989. The past record and future prospects for the use of exotic potato germplasm. American Journal of Potato Research 66: 603–627.CrossRefGoogle Scholar
  37. Reeve, R. 1967. A review of cellular structure, starch, and texture qualities of processed potatoes. Economic Botany 21: 294–308.CrossRefGoogle Scholar
  38. Salmeron, J., A. Ascherio, E. Rimm, G. Colditz, D. Spiegelman, D. Jenkins, M. Stampfer, A. Wing, and W. Willett. 1997a. Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care 20: 545–550.PubMedCrossRefGoogle Scholar
  39. Salmeron, J., J. Manson, M. Stampfer, G. Colditz, A. Wind, and W. WIllett. 1997b. Dietary fiber, glycemic load, and risk of non-insulin dependent diabetes mellitus in women. Journal of the American Medical Association 277: 472–477.PubMedCrossRefGoogle Scholar
  40. Schittenhelm, S., and U. Menge-Hartmann. 1992. Starke-und AmylosegehaltsowieGroβe und Morphologie der Starkekorner von knollentragendenSolanum-Arten. Landbauforschung Volkenrode 42: 117–126.Google Scholar
  41. Schwimmer, S., A. Bevenue, W. Western, and A. Potter. 1954. Survey of major and minor sugar and starch components of the white potato. Agricultural and Food Chemistry 2: 1284–1290.CrossRefGoogle Scholar
  42. Shukla, G.K. 1971. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity 237: 237–245.Google Scholar
  43. Soh, N.L., and J. Brand-Miller. 1999. The glycaemic index of potatoes: The effect of variety, cooking method and maturity. European Journal of Clinical Nutrition 53: 249–254.PubMedCrossRefGoogle Scholar
  44. Sowokinos, J.R. 2001. Biochemical and molecular control of cold-induced sweetening in potatoes. American Journal of Potato Research 78: 221–236.CrossRefGoogle Scholar
  45. Survase, S.A., and R.S. Singhal. 2009. Novel applications and non-food uses of potato: Future perspectives in nanotechnology. In Advances in potato chemistry and technology, ed. L. Kaur and J. Singh, 425–445. Burlington: Elsevier Ltd.Google Scholar
  46. Svegmark, K., K. Helmersson, G. Nilsson, P.O. Nilsson, R. Andersson, and E. Svensson. 2002. Comparison of potato amylopectin starches and potato starches–influence of year and variety. Carbohydrate Polymers 47: 331–340.CrossRefGoogle Scholar
  47. Tester, R., and J. Karkalas. 2001. The effects of environmental conditions on the structural features and physico-chemical properties of starches. Starch-Starke 53: 513–519.CrossRefGoogle Scholar
  48. Tetlow, I.J. 2006. Understanding storage starch biosynthesis in plants: A means to quality improvement. Canadian Journal of Botany 84: 1167–1185.CrossRefGoogle Scholar
  49. Thompson, A., R. Novy, B. Farnsworth, G. Secor, N. Gudmestad, J. Sowokinos, E. Holm, J. Lorenzen, and D. Preston. 2005. Dakota Pearl: An attractive, bright white-skinned, cold-chipping cultivar with tablestock potential. American Journal of Potato Research 82: 481–488.CrossRefGoogle Scholar
  50. Weaver, M., H. Timm, M. Nonaka, R. Sayre, R. Reeve, R. McCready, and L. Whitehand. 1978. Potato composition: I. Tissue selection and its effects on solids content and amylose/amylopectin ratios. American Potato Journal 55: 73–82.CrossRefGoogle Scholar
  51. Weisenborn, D.P., P.H Orr, H.H Casper and B.T. Tacke. 1994. Potato starch paste behaviour as related to some physical/chemical properties. Journal of Food Science 59: 644–648.Google Scholar
  52. Yusuph, M., R.F. Tester, R. Ansell, and C.E. Snape. 2003. Composition and properties of starches extracted from tubers of different potato varieties grown under the same environmental conditions. Food Chemistry 82: 283–289.CrossRefGoogle Scholar
  53. Zhang, J., A. Murphy, G. Liu, B. Bizimungu, Q. Liu, Y. Leclerc, T. Xing, and X.-Q. Li. 2011. Starch granule size variation and relationship with tuber dry matter content in heritage potato varieties. Scientia Horticulturae 130(3): 503–509.CrossRefGoogle Scholar

Copyright information

© Potato Association of America 2013

Authors and Affiliations

  • Diego Fajardo
    • 1
  • Kathleen G. Haynes
    • 2
  • Shelley Jansky
    • 1
    • 3
  1. 1.USDA-ARS, Vegetable Crops Research UnitMadisonUSA
  2. 2.USDA-ARS, Beltsville Area Research CenterBeltsvilleUSA
  3. 3.Department of HorticultureUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations