Advertisement

American Journal of Potato Research

, Volume 90, Issue 5, pp 440–450 | Cite as

Analysis of Polyphenols, Anthocyanins and Carotenoids in Tubers from Solanum tuberosum Group Phureja, Stenotomum and Andigena

  • Syamkumar S. Pillai
  • Duroy A. Navarre
  • John Bamberg
Article

Abstract

Sixty-five Solanum tuberosum group Andigena, Phureja and Stenotomum genotypes from an initial population of 1,500 were analyzed for phenylpropanoids, carotenoids, and antioxidant capacity. Total phenolic content ranged from 3 to 49 mg g−1 DW, total carotenoids from 4.1 to 154 μg/g DW, anthocyanins from 0.27 to 34 mg g−1 DW and antioxidant capacity from 60 to 1,767 μmol TE/g DW. HPLC analysis of phenolic extracts revealed that 5-O-chlorogenic acid (5CGA) was the most abundant polyphenol in all genotypes. Ten genotypes were independently grown out for more in-depth phytonutrient analysis. The Phureja genotypes RN 27.01 had the highest polyphenol, anthocyanin and antioxidant content, while RN 39.05 had the highest carotenoid content. The tuber percentage dry matter varied markedly among the ten genotypes, influencing the phytonutrient values when expressed on a dry weight basis. Chlorogenic acid concentrations ranged from 1.7 to 29.4 mg g−1 DW and kaempferol-3-rutinose was present up to 3 mg g−1 DW. Petunidin-3-O-coum-rutinoside-5-O-glu or pelargonidin-3-O-coum-rutinoside-5-O-glu were the most abundant anthocyanins. The principal carotenoids were lutein, zeaxanthin, violaxanthin, and antheraxanthin, but no one carotenoid was predominant in all genotypes. These findings further support utilization of Phureja group germplasm for phytonutrient enhancement efforts.

Keywords

Anthocyanin Antioxidants Carotenoids Chlorogenic acid Flavonols Phenolics Phytonutrients Potato Phureja Solanum tuberosum 

Resumen

Se analizaron 65 genotipos de Solanum tuberosum grupo Andigena, Phureja y Stenotomum, de una población inicial de 1500, para fenilpropanoides, carotenoides y capacidad antioxidante. El contenido total de fenoles varió de 3 a 49 mg g-1 de peso seco (PS), los carotenoides totales de 4.1 a 154 μg/g de PS, antocianinas de 0.27 a 34 mg g-1 PS y la capacidad antioxidante de 60-1,767 μmol TE/g PS. El análisis de los extractos fenólicos por cromatografía de líquidos de alto comportamiento (HPLC) reveló que ácido 5-O-clorogénico (5CGA) era el polifenol más abundante en todos los genotipos. Se cultivaron independientes diez genotipos para un análisis más a profundidad de fitonutrientes. Los genotipos de Phureja RN 27.01 tuvieron el mayor contenido de polifenol, antocianina y antioxidantes, mientras que RN 39.05 tuvo el mayor contenido de carotenoides. El porcentaje de materia seca de tubérculo varió marcadamente entre los diez genotipos, influenciando los valores de los fitonutrientes cuando se expresaron con base a peso seco. Las concentraciones de ácido clorogénico variaron de 1.7-29.4 mg g-1 PS y kaempferol-3-rutinosa estuvo presente hasta en 3 mg g-1 PS. Las antocianinas más abundantes fueron Petunidina-3-O-coum-rutinosida-5-O-glu o pelargonidina-3-O-coum-rutinosida-5-O-glu. Los principales carotenoides fueron luteína, zeaxantina, violaxantina y anteraxantina, pero ninguno de los carotenoides fue predominante en todos los genotipos. Estos resultados respaldan aún más la utilización del germoplasma del grupo Phureja para los esfuerzos del incremento en fitonutrientes.

Supplementary material

12230_2013_9318_MOESM1_ESM.doc (36 kb)
Supplemental Table 1 (DOC 36 kb)

References

  1. Ahmed, S.S., M.N. Lott, and D.M. Marcus. 2005. The macular xanthophylls. Survey of Ophthalmology 50: 183–193.PubMedCrossRefGoogle Scholar
  2. Bassoli, B.K., P. Cassolla, G.R. Borba-Murad, J. Constantin, C.L. Salgueiro-Pagadigorria, R.B. Bazotte, R.S. da Silva, and H.M. de Souza. 2008. Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: effects on hepatic glucose release and glycaemia. Cell Biochemistry and Function 26: 320–328.PubMedCrossRefGoogle Scholar
  3. Benzie, I.F.F., and J.J. Strain. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry 239: 70–76.PubMedCrossRefGoogle Scholar
  4. Bonierbale, M., W. Grüneberg, W. Amoros, G. Burgos, E. Salas, E. Porras, and T. zum Felde. 2009. Total and individual carotenoid profiles in Solanum phureja cultivated potatoes. II. Development and application of near-infrared reflectance spectroscopy (NIRS) calibrations for germplasm characterization. Journal of Food Composition and Analysis 22: 509–516.CrossRefGoogle Scholar
  5. Breithaupt, D.E., and A. Bamedi. 2002. Carotenoids and carotenoid esters in potatoes (Solanum tuberosum L.): new insights into an ancient vegetable. Journal of Agricultural and Food Chemistry 50: 7175–7181.PubMedCrossRefGoogle Scholar
  6. Brown, C.R., C.G. Edwards, C.-P. Yang, and B.B. Dean. 1993. Orange flesh trait in potato: inheritance and carotenoid content. Journal of the American Society for Horticultural Science 118: 145–150.Google Scholar
  7. Burgos, G., E. Salas, W. Amoros, M. Auqui, L. Muñoa, M. Kimura, and M. Bonierbale. 2009. Total and individual carotenoid profiles in Solanum phureja of cultivated potatoes: I. Concentrations and relationships as determined by spectrophotometry and HPLC. Journal of Food Composition and Analysis 22: 503–508.CrossRefGoogle Scholar
  8. Burt, A.J., C.M. Grainger, M.P. Smid, B.J. Shelp, and E.A. Lee. 2011. Allele mining of exotic maize germplasm to enhance macular carotenoids. Crop Science 51: 991–1004.CrossRefGoogle Scholar
  9. Chun, O.K., D.O. Kim, N. Smith, D. Schroeder, J.T. Han, and C.Y. Lee. 2005. Daily consumption of phenolics and total antioxidant capacity from fruit and vegetables in the American diet. Journal of the Science of Food and Agriculture 85: 1715–1724.CrossRefGoogle Scholar
  10. Ducreux, L.J., W.L. Morris, I.M. Prosser, J.A. Morris, M.H. Beale, F. Wright, T. Shepherd, G.J. Bryan, P.E. Hedley, and M.A. Taylor. 2008. Expression profiling of potato germplasm differentiated in quality traits leads to the identification of candidate flavour and texture genes. Journal of Experimental Botany 59: 4219–4231.PubMedCrossRefGoogle Scholar
  11. Eichhorn, S., and P. Winterhalter. 2005. Anthocyanins from pigmented potato (Solanum tuberosum L.) varieties. Food Research International 8–9: 943–948.CrossRefGoogle Scholar
  12. Feng, R., Y. Lu, L.L. Bowman, Y. Qian, V. Castranova, and M. Ding. 2005. Inhibition of activator protein-1, NF-kappaB, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. Journal of Biological Chemistry 280: 27888–27895.PubMedCrossRefGoogle Scholar
  13. Fraser, P.D., M.E. Pinto, D.E. Holloway, and P.M. Bramley. 2000. Technical advance: application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. The Plant Journal 24: 551–558.PubMedCrossRefGoogle Scholar
  14. Friedman, M. 1997. Chemistry, biochemistry, and dietary role of potato polyphenols. A review. Journal of Agricultural and Food Chemistry 45: 1523–1540.CrossRefGoogle Scholar
  15. Garcia-Closas, R., A. Berenguer, M. Jose Tormo, M. Jose Sanchez, J.R. Quiros, C. Navarro, R. Arnaud, M. Dorronsoro, M. Dolores Chirlaque, A. Barricarte, E. Ardanaz, P. Amiano, C. Martinez, A. Agudo, and C.A. Gonzalez. 2004. Dietary sources of vitamin C, vitamin E and specific carotenoids in Spain. British Journal of Nutrition 91: 1005–1011.PubMedCrossRefGoogle Scholar
  16. Gillespie, K.M., J.M. Chae, and E.A. Ainsworth. 2007. Rapid measurement of total antioxidant capacity in plants. Nature Protocols 2: 867–870.PubMedCrossRefGoogle Scholar
  17. Giusti, M.M. and R.E. Wrolstad. 2001. Characterization and measurement of anthocyanins by UV-spectroscopy. Current Protocols in Food and Analytical Chemistry F1.2.1–F1.1.11.Google Scholar
  18. Goyer, A., and K. Sweek. 2011. Genetic diversity of thiamin and folate in primitive cultivated and wild potato (Solanum) species. Journal of Agricultural and Food Chemistry 59: 13072–13080.PubMedCrossRefGoogle Scholar
  19. Hauman, Z., J.T. Williams, W. Salhuana and L. Vincent. 1977. Descriptors for the cultivated potato: And for the maintenance and distribution of germplasm collections. International Board for Plant Genetic Resources.Google Scholar
  20. Hawkes, J.G. 1990. The potato: Evolution, biodiversity, and genetic resources. Oxford: Belhaven Press.Google Scholar
  21. Haynes, K.G. 2000. Inheritance of yellow-flesh intensity in diploid potatoes. Journal of the American Society for Horticultural Science 125: 63–65.Google Scholar
  22. Jin, U.H., J.Y. Lee, S.K. Kang, J.K. Kim, W.H. Park, J.G. Kim, S.K. Moon, and C.H. Kim. 2005. A phenolic compound, 5-caffeoylquinic acid (chlorogenic acid), is a new type and strong matrix metalloproteinase-9 inhibitor: isolation and identification from methanol extract of Euonymus alatus. Life Sciences 77: 2760–2769.PubMedCrossRefGoogle Scholar
  23. Kaspar, K.L., J.S. Park, C.R. Brown, B.D. Mathison, D.A. Navarre, and B.P. Chew. 2011. Pigmented potato consumption alters oxidative stress and inflammatory damage in men. Journal of Nutrition 141: 108–111.PubMedCrossRefGoogle Scholar
  24. Konczak, I., and W. Zhang. 2004. Anthocyanins-more than nature’s colours. Journal of Biomedicine and Biotechnology 2004: 239–240.PubMedCrossRefGoogle Scholar
  25. Kurilich, A.C., and J.A. Juvik. 1999. Quantification of carotenoid and tocopherol antioxidants in Zea mays. Journal of Agricultural and Food Chemistry 47: 1948–1955.PubMedCrossRefGoogle Scholar
  26. Lewis, C.E., J.R.L. Walker, J.E. Lancaster, and K.H. Sutton. 1998. Determination of anthocyanins, flavonoids and phenolic acids in potatoes. I. Coloured cultivars of Solanum tuberosum L. Journal of the Science of Food and Agriculture 77: 45–57.CrossRefGoogle Scholar
  27. Minguez-Mosquera, M.I., and D. Hornero-Mendez. 1994. Formation and transformation of pigments during the fruit ripening of Capsicum annuum cv. Bola and Agridulce. Journal of Agricultural and Food Chemistry 42: 38–44.CrossRefGoogle Scholar
  28. Morris, W.L., L. Ducreux, D.W. Griffiths, D. Stewart, H.V. Davies, and M.A. Taylor. 2004. Carotenogenesis during tuber development and storage in potato. Journal of Experimental Botany 55: 975–982.PubMedCrossRefGoogle Scholar
  29. Navarre, D.A., S. Pillai, R. Shakya, and M.J. Holden. 2011. HPLC profiling of phenolics in diverse potato genotypes. Food Chemistry 127: 34–41.CrossRefGoogle Scholar
  30. Nogueira, T., and C.L. do Lago. 2007. Determination of caffeine in coffee products by dynamic complexation with 3,4-dimethoxycinnamate and separation by CZE. Electrophoresis 28: 3570–3574.PubMedCrossRefGoogle Scholar
  31. Ovchinnikova, A., E. Krylova, T. Gavrilenko, T. Smekalova, M. Zhuk, S. Knapp, and D.M. Spooner. 2011. Taxonomy of cultivated potatoes (Solanum section Petota: Solanaceae). Botanical Journal of the Linnean Society 165: 107–155.CrossRefGoogle Scholar
  32. Parr, A.J., and G.P. Bolwell. 2000. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. Journal of the Science of Food and Agriculture 80: 985–1012.CrossRefGoogle Scholar
  33. Parr, A.J., F.A. Mellon, I.J. Colquhoun, and H.V. Davies. 2005. Dihydrocaffeoyl polyamines (kukoamine and allies) in potato (Solanum tuberosum) tubers detected during metabolite profiling. Journal of Agricultural and Food Chemistry 53: 5461–5466.PubMedCrossRefGoogle Scholar
  34. Payyavula, R.S., D.A. Navarre, J.C. Kuhl, A. Pantoja, and S.S. Pillai. 2012. Differential effects of environment on potato phenylpropanoid and carotenoid expression. BMC Plant Biology 12: 39.PubMedCrossRefGoogle Scholar
  35. Reddivari, L., J. Vanamala, S. Chintharlapalli, S.H. Safe, and J.C. Miller Jr. 2007. Anthocyanin fraction from potato extracts is cytotoxic to prostate cancer cells through activation of caspase-dependent and caspase-independent pathways. Carcinogenesis 28: 2227–2235.PubMedCrossRefGoogle Scholar
  36. Shakya, R., and D.A. Navarre. 2006. Rapid screening of ascorbic acid, glycoalkaloids, and phenolics in potato using high-performance liquid chromatography. Journal of Agricultural and Food Chemistry 54: 5253–5260.PubMedCrossRefGoogle Scholar
  37. Skerget, M., P. Kotnik, M. Hadolin, A.R. Hras, M. Simonic, and Z. Knez. 2005. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chemistry 89: 191–198.CrossRefGoogle Scholar
  38. Yamaguchi, T., A. Chikama, K. Mori, T. Watanabe, Y. Shioya, Y. Katsuragi, and I. Tokimitsu. 2008. Hydroxyhydroquinone-free coffee: a double-blind, randomized controlled dose-response study of blood pressure. Nutrition, Cardiovascular & Metabolic Diseases 18: 408–414.CrossRefGoogle Scholar
  39. Zhang, Y., S.K. Vareed, and M.G. Nair. 2005. Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables. Life Sciences 76: 1465–1472.PubMedCrossRefGoogle Scholar

Copyright information

© Potato Association of America 2013

Authors and Affiliations

  • Syamkumar S. Pillai
    • 1
  • Duroy A. Navarre
    • 2
  • John Bamberg
    • 3
  1. 1.Irrigated Agriculture and Extension Research CenterWashington State UniversityProsserUSA
  2. 2.USDA-Agricultural Research ServiceWashington State UniversityProsserUSA
  3. 3.Vegetable Crops Research UnitUSDA-Agricultural Research ServiceSturgeon BayUSA

Personalised recommendations