Skip to main content

Tracking Foliar Symptoms Caused by Tuber-Borne Potato Yellow Vein Virus (PYVV) in Solanum Phureja (Juz et Buk) Cultivar “Criolla Colombia”

Abstract

Potato yellow vein virus (PYVV) causes vein yellowing in leaves and reduces potato yield by 50 %. In Andigena potato varieties, PYVV infections result in both symptomatic (S) and symptomless (NS) plants. The present study tracked PYVD symptoms over two field generations (G1 and G2) derived from mother plants (G0) of the Solanum phureja cultivar “Criolla Colombia.” PYVV was detected in the leaves of G0 plants by RT-PCR. The experiment began with tubers of 39 S plants from a commercial crop and 94 certified NS plants (PLRV, PVY, PVX, PVS free), yielding a total of 3561 plants analyzed over the two generations. The greenhouse whitefly vector Trialeurodes vaporarioum was controlled chemically. S plants produced large proportions of NS plants, 62 % and 84 % in G1 and G2, respectively. NS plants, whether RT-PCR positive or negative, generated greater than 96 % NS plants, but in some cases, produced a proportion of S plants ranging between 0.2 % and 3.4 %. The presence of PYVV was evaluated by RT-PCR and qPCR with Taqman probes in sprouts of the tubers of S and NS plants. One to 6 sprouts were analyzed per tuber. In 113 sprouts of the tubers of S RT-PCR positive/ negative plants and 36 of NS RT-PCR positive/negative plants, the viral RNA copies ranged between 3.42 × 102 to 6.01 × 108 copies/mg of plant extract. These results show that PYVV is present not only in symptomatic plants but also in some symptomless plants. PYVV is passed from symptomless mother plants to some of its tubers along with unknown putative silencing or latency mechanisms that prevent the virus from expressing in most of the infected progeny. Late vector transmission, heterogeneous viral concentration in tubers and virus latency are also discussed.

Resumen

El virus del amarillamiento de la nervadura de hoja de papa (PYVV) causa amarillamiento de las venas en hojas y reduce el rendimiento en cerca de 50 %. En variedades de papa Andígena, las infecciones por PYVV resultan tanto en plantas sintomáticas (S) como en no sintomáticas (NS). En el presente estudio se le hizo seguimiento a los síntomas de PYVV durante dos generaciones de campo (G1 y G2) derivadas de planta madre (G0) de la variedad “Criolla Colombia” de Solanum phureja. Se detectó PYVV en las hojas de plantas G0 por RT-PCR. El experimento se inició con tubérculos de 39 plantas S de un cultivo comercial y 94 plantas NS certificadas (libres de PLRV, PVY, PVX, PVS), para un total de 3561 plantas analizadas en las dos generaciones. Se controló químicamente al vector mosca blanca de invernadero Trialeurodes vaporariorum. Las plantas S produjeron una gran proporción de plantas NS, 62 % y 84 % en G1 y G2, respectivamente. Las plantas NS, ya fueran positivas o negativas por RT-PCR, generaron más de 96 % de plantas NS, pero en algunos casos, produjeron una proporción de plantas S, fluctuando entre 0.2 y 3.4 %. La presencia de PYVV se evaluó por RT-PCR y qPCR con sondas Taqman en brotes de los tubérculos de plantas S y NS. Se analizaron de uno a seis brotes por tubérculo. En 113 brotes de tubérculos de plantas S RT-PCR positivas/negativas y en 36 plantas de NS RT-PCR positivas/negativas, las copias del ARN viral fluctuaron entre 3.42 × 102 a 6.01 × 108 copias/mg de extracto de plantas. Estos resultados muestran que PYVV está presente no solo en plantas sintomáticas sino también en algunas no sintomáticas. El PYVV pasa de las plantas madre sin síntomas a algunos de sus tubérculos posiblemente junto con mecanismos potenciales de silenciamiento o de latencia que evitan que el virus se exprese en la mayoría de la progenie infectada. También se discute la transmisión tardía por vector, concentración heterogénea viral en tubérculos y latencia del virus.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Astier, S., J. Albouy, Y. Maury, C, Robaglia and H. Lecoq. 2007. Principles of plant virology. Ed. Completar astier: Science Publishers.

  • Chávez, P., P. Zorogastúa, C. Chuquillanqui, L.F. Salazar, V. Maresand, and R. Quiroz. 2009. Assessing Potato Yellow Vein Virus (PYVV) infection using remotely sensed data. International Journal of Pest Management 55: 251–256.

    Article  Google Scholar 

  • Chávez, P., C. Yarlequé, O. Piro, A. Posadas, V. Mares, H. Loayza, C. Chuquillanqui, P. Zorogastúa, J. Flexas, and R. Quiroz. 2010. Applying a multifractal analysis to remotely sensed data for assesing PYVV infection in potato (Solanum tuberosum L.). Crops Remote Sensing 2: 1197–1216.

    Article  Google Scholar 

  • Franco-Lara, L., A. Villamil, A. Guateque, and M. Guzmán. 2009. Evidence of latency in tubers and plants of S. phureja. Phytopathology 99: S37.

    Google Scholar 

  • Green, S.K., Y.J. Kuo, and R. Lee. 1988. Uneven distribution of two potyviruses (feathery mottle virus and sweet potato latent virus) in sweet potato and its implication on virus indexing of meristem derived plants. Tropical Pest Management 34: 298–302.

    Article  Google Scholar 

  • Guzmán, M. 2008. Manual de protocolos para la detección de algunos virus que infectan la papa (Solanum spp.). ed. Cevipapa-UNAL. 101 pp. Bogotá Colombia.

  • Guzmán, M., and P. Rodríguez. 2010. Susceptibility of Solanum phureja (Juz et Buk) to potato yellow vein virus. Agronomía Colombiana 28: 219–224.

    Google Scholar 

  • Guzmán, M., E. Ruiz, N. Arciniegas, and R. Coutts. 2006. Occurrence and Variability of Potato yellow vein virus in three departments of Colombia. Journal of Phytopathology 154: 748–750.

    Article  Google Scholar 

  • Guzmán, M., L. Franco-Lara, D. Rodríguez, J.E. Fierro, and L. Vargas. 2011. Disminución de la producción de papa criolla (Solanum phureja Juz et Buk) (cultivar Colombia) infectada con Potato yellow vein virus en un modelo de campo en Cundinamarca. Fitopatología Colombiana 35(1S): 11.

    Google Scholar 

  • Hawkes, J.G. 1990. The potato: Evolution, biodiversity and genetic resources, 1–10. London: Belhaven Press. 178.

    Google Scholar 

  • Hutton, E.M., and R.D. Brock. 1953. Reactions and field resistance of some potato varieties and hybrids to potato leafroll virus. Australian Journal of Agricultural Research 4: 256–263.

    Google Scholar 

  • Karjeija, R., J.F. Kreuze, R.W. Gibson, and J.P.T. Valkonen. 2000. Synergistic interactions of a potyvirus and a phloem-limited Crinivirus in sweet potato plants. Virology 269: 26–36.

    Article  Google Scholar 

  • Latvala-Kilby, S., J.M. Aura, N. Pupola, A. Hannukkala, and J.P. Valkonen. 2009. Detection of Potato mop-top virus in potato tubers and sprouts: combination of RNA2 and RNA3 variants and incidence of symptomless infections. Phytopathology 99: 519–531.

    Article  PubMed  CAS  Google Scholar 

  • Li, D., P. Chen, A. Shi, E. Shakiba, R. Gergerich, and Y. Chen. 2009. Temperature affects expression of symptoms induced by soybean mosaic virus in homozygous and heterozygous plants. Journal of Heredity 100: 348–354.

    Article  PubMed  CAS  Google Scholar 

  • Livieratos, I., E. Eliasco, G. Muller, R. Olsthoorn, L. Salazar, W. Pleij, and R. Coutts. 2004. Analysis of the RNA of Potato yellow vein virus: evidence for a tripartite genome and conserved 3′-terminal structures among members of the genus Crinivirus. Journal of General Virology 8: 2065–2075.

    Article  Google Scholar 

  • López, R., C. Asensio, M. Guzmán, and N. Boohman. 2006. Development of real-time and conventional RT-PCR assays for the detection of potato yellow vein virus (PYVV). Journal of Virological Methods 136: 24–29.

    Article  PubMed  Google Scholar 

  • Offei, S.K., N. Arciniegas, G. Muller, M. Guzmán, L.F. Salazar, and R.H.A. Coutts. 2004. Molecular variation of Potato yellow vein virus isolates. Archives of Virology 149: 821–827.

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Burgos, P., G. Chaves, L. Franco-Lara, and M. Guzmán-Barney. 2010. Low molecular variability of Potato yellow vein virus (PYVV) isolates of Solanum phureja and Solanum tuberosum from Colombia. Phytopathology 100: S176.

    Google Scholar 

  • Salazar, L. 2006. Emerging and re-emerging potato diseases. Potato Research 49: 43–47.

    Article  Google Scholar 

  • Salazar, L., G. Muller, M. Querci, J. Zapata, and R. Owens. 2000. Potato yellow virus: its host range, distribution in South America and identification as a Crinivirus transmitted by Trialeurodes vaporariorum. Annals of Applied Biology 137: 7–19.

    Article  CAS  Google Scholar 

  • Saldarriaga, A., A. Alvarez, and J. Jaramillo. 1988. Efecto del amarillamiento de venas transmitido por Trialeurodes vaporariorum (Westwood) en papa. Revista Colombiana de Entomología 14: 3–8.

    Google Scholar 

  • Solomon-Blackburn, R.M., J. Nikan, and H. Barker. 2008. Mechanism of strong resistance to Potato leafroll virus infection in a clone of potato (Solanum tuberosum). Annals of Applied Biology 152: 339–347.

    Article  Google Scholar 

  • Struik, P.C. 2007. Above-ground and below-ground plant development. In Potato biology and biotechnology: Advances and perspectives, eds. D. Vreugdenhil et al. Elsevier: The Netherlands.

  • Suttle. J.C. 2000. The role of endogenous hormones in potato tuber dormancy. In Dormancy in plants: From whole plant behavior to cellular control, eds. J.D. Viemont and J. Crabbe. UK: CABI Publishing.

  • Taliansky, M., M. Mayo, and H. Barker. 2003. Potato leafroll virus: A classic pathogen shows some new tricks. Molecular Plant Pathology 4: 81–89.

    Article  PubMed  CAS  Google Scholar 

  • Tichopad, A., M.W. Pfaffl, and A. Didier. 2003. Tissue-especific expression pattern of bovine prion gene: Quantification using real-time RT-PCR. Molecular and Cellular Probes 18: 45–50.

    Article  Google Scholar 

  • Untiveros, M., S. Fuentesand, and L. Salazar. 2007. Synergistic interaction of sweet potato chlorotic stunt virus (Crinivirus) with Carla-, Cucumo-, Ipomo-, and Potyviruses infecting sweet Potato. Plant Disease 91: 669–676.

    Article  Google Scholar 

  • USDA-APHIS. 2009. Notification of Department of Agriculture. Conditions for Import of Seed Potatoes from the United States of America B.E. 2552.http://moacdc.thaiembdc.org/pdfs/USA_Seed%20Potatoes_ENG.pdf ]. 23-07-2011.

  • Whitworth, J.L., P.B. Hamm, and P. Nolte. 2012. Distribution of virus Y strains in tubers during the post-harvest period. American Journal of Potato Research 89: 136–141.

    Article  CAS  Google Scholar 

  • Wilson, C.R., and R.A.C. Jones. 1992. Resistance to phloem transport of potato leafroll virus in potato plants. Journal of General Virology 73: 3219–3224.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Universidad Nacional de Colombia-Instituto de Biotecnología, Universidad Militar Nueva Granada, Ministerio de Agricultura y Desarrollo Rural -ASOHOFRUCOL Project MARD 2007S4654-69. We would like to offer our special thanks to the students Patricia Rodríguez, Anngie Hernandez from the Plant Virus Laboratory, IBUN-UNAL and Juan Esteban Fierro and Lorena Vargas from the Universidad Militar Nueva Granada. We would also like to acknowledge Mr. Robert Quiñones and the San Joaquin Farm, Mosquera, Cundinamarca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Guzmán-Barney.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guzmán-Barney, M., Hernández, A.K. & Franco-Lara, L. Tracking Foliar Symptoms Caused by Tuber-Borne Potato Yellow Vein Virus (PYVV) in Solanum Phureja (Juz et Buk) Cultivar “Criolla Colombia”. Am. J. Potato Res. 90, 284–293 (2013). https://doi.org/10.1007/s12230-013-9303-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-013-9303-6

Keywords

  • qRT-PCR
  • Symptoms
  • Tubers
  • Virus concentration