American Journal of Potato Research

, Volume 89, Issue 5, pp 363–373 | Cite as

Effect of Manure Application Timing on Potato Yield, Quality, and Disease Incidence

  • Meghan A. Curless
  • Keith A. Kelling
  • Phillip E. Speth
  • Walter R. Stevenson
  • R. Vaughan James


This study was established to determine whether the timing of liquid dairy manure application prior to planting potatoes influenced potato crop performance and the occurrence and severity of common scab (Streptomyces spp.) and verticillium wilt (Verticillium dahliae). Four potato (Solanum tuberosum L.) varieties with varying levels of resistance to common scab and verticillium wilt were planted on a site treated with manure applied at 280,500 L ha−1 to separate plot areas 18, 6, or 1 month before potato planting in each of 2 years. Total tuber yield for 2001 showed a significant interaction between time of manure application and variety, with more scab-susceptible varieties (Russet Norkotah and W-1151R) showing lower yields compared to the fertilizer control when the manure application was made 1 month before planting. In 2002, the proportion of U.S. No. 1 tubers was significantly lower when manure was applied 1 month before planting, especially for W-1151R. Tuber dry matter was significantly reduced by manure application in both years, but was not consistently related to time of manure application. Total yield was significantly decreased as common scab levels increased, and this relationship was primarily driven by the low yield/high scab levels associated with W-1151R and Russet Norkotah planted 6 or 1 month after manure application in 2001. Late-season verticillium evaluations showed highest levels in 2001 when manure was applied 1 month before planting to susceptible varieties Superior and Russet Norkotah. This experiment showed that when manure was applied immediately ahead of potato planting yields, and quality of some varieties decreased in 1 of 2 years. Therefore, it may be safer to apply manure at least 18 months prior to planting potatoes.


Solanum tuberosum Dairy manure Common scab Verticillium 


El presente estudio se estableció para determinar si el tiempo de aplicación de estiércol vacuno líquido antes de plantar papa influenciaba el comportamiento del cultivo de la papa y la incidencia y severidad de la roña común (Streptomyces spp.) y el marchitamiento por verticillium (Verticillium dahliae). Se plantaron cuatro variedades de papa (Solanum tuberosum L.) con diferentes niveles de resistencia a la roña común y al marchitamiento por verticillium, en un sitio tratado con estiércol aplicado a razón de 280,500 L ha−1, para separar lotes con las aplicaciones a los 18, seis, o un mes antes de la siembra en cada uno de dos años. El rendimiento total de tubérculo para 2001 mostró una interacción significativa entre el tiempo de aplicación del estiércol y la variedad, en donde las susceptibles a la roña (Russet Norkotah y W-1151R) tuvieron rendimientos más bajos comparadas con el testigo de fertilización cuando se hizo la aplicación del estiércol un mes antes de la siembra. En el 2002, la proporción de tubérculos U.S. No. 1 fue significativamente mas baja cuando se aplicó el estiércol un mes antes de la siembra, especialmente con W-1151R. Se redujo significativamente la materia seca del tubérculo con la aplicación del estiércol en ambos años, pero no estuvo relacionada consistentemente con el tiempo de su aplicación. Se disminuyó significativamente el rendimiento total a medida que aumentaron los niveles de la roña común, y esta relación fue conducida primeramente por la asociación bajo rendimiento/altos niveles de roña, asociados con la siembra de W-1151R y Russet Norkotah seis o un mes después de la aplicación del estiércol en 2001. Las evaluaciones tardías de verticillium mostraron los más altos niveles en 2001, cuando el estiércol se aplicó un mes antes de la siembra en las variedades susceptibles Superior y Russet Norkotah. Este experimento demostró que cuando se aplicaba el estiércol inmediatamente antes de la siembra de papa, los rendimientos y la calidad de algunas variedades disminuyeron en uno o en los dos años. De aquí que pudiera ser más seguro aplicar el estiércol a medida que se hacen rotaciones con papa, en vez de hacerlo inmediatamente antes de la papa.


  1. Adriano, D.C., A.C. Chang, P.F. Pratt, and R. Sharpless. 1973. Effect of soil application of dairy manure on germination and emergence of some selected crops. Journal of Environmental Quality 2: 396–399.CrossRefGoogle Scholar
  2. Blodgett, F.M. 1940. A second report on the effect of agronomic practices on the incidence of Rhizoctonia and scab of potatoes. American Potato Journal 17: 290–295.CrossRefGoogle Scholar
  3. Boerboom, C.M., L.G. Bundy, A.J. Bussan, K.A. Delahaut, K.A. Kelling, D.L. Mahr, B.A. Michaelis, W.R. Stevenson, J. Wedberg, and J.A. Wyman. 2003. Commercial Vegetable Production in Wisconsin. Madison: University of Wisconsin-Extension Publication A3422.Google Scholar
  4. Chang, C., T.G. Sommerfeldt, and T. Entz. 1991. Soil chemistry after eleven annual applications of cattle feedlot manure. Journal of Environmental Quality 20: 475–480.CrossRefGoogle Scholar
  5. Combs, S.M., J.B. Peters, and J. Parsen. 2001. Wisconsin Soil Testing, Plant, Manure, and Feed and Forage Analysis Procedures. Department of Soil Science, University of Wisconsin-Madison.Google Scholar
  6. Conn, K.L., and G. Lazarovits. 1999. Impacts of animal manures on verticillium wilt, potato scab, and soil microbial populations. Canadian Journal of Plant Pathology 21: 81–92.Google Scholar
  7. Conn, K.L., and G. Lazarovits. 2000. Soil factors influencing the efficacy of liquid swine manure added to soil to kill Verticillium dahliae. Canadian Journal of Plant Pathology 22: 400–406.CrossRefGoogle Scholar
  8. Conn, K.L., M. Tenuta, and G. Lazarovits. 2005. Liquid swine manure can kill Verticillium dahliae microsclerotia in soil by volatile fatty acid, nitrous acid, and ammonia toxicity. Phytopathology 95: 28–35.PubMedCrossRefGoogle Scholar
  9. Curless, M.A., K.A. Kelling, and P.E. Speth. 2005. Nitrogen and phosphorus availability from liquid dairy manure to potatoes. American Journal of Potato Research 82: 287–297.CrossRefGoogle Scholar
  10. Davis, J.R., R.E. McDole, and R.H. Callihan. 1976. Fertilizer effects on common scab of potato and the relation of calcium and phosphate-phosphorus. Phytopathology 66: 1236–1241.CrossRefGoogle Scholar
  11. Davis, J.R., L.H. Sorenson, J.C. Stark, and D.T. Westermann. 1990. Fertility and management practices to control verticillium wilt of the Russet Burbank potato. American Potato Journal 67: 55–65.CrossRefGoogle Scholar
  12. Dawson, M.A., and K.A. Kelling. 2002. Use of manure in potato production. In Proceedings of the Annual Wisconsin Potato Meetings 15: 17–27.Google Scholar
  13. Dippenaar, B.J. 1933. Environmental and Control Studies of the Common Scab Disease of Potatoes Caused by Actinomyces scabies (Thaxt.) Guss. Bulletin 136, Department of Soil Science, Union of South Africa.Google Scholar
  14. Doyle, J.J., and A.A. McLean. 1960. Relationship between Ca:K ratio, pH, and prevalence of potato scab. Canadian Journal of Plant Science 40: 616–619.CrossRefGoogle Scholar
  15. Goss, R.W., and M.M. Afanasiev. 1938. Influence of Rotations under Irrigation on Potato Scab, Rhizoctonia, and Fusarium Wilt. Bulletin 317. Lincoln: Nebraska Agricultural Experiment Station.Google Scholar
  16. Goto, K. 1985. Relationships between soil pH, available calcium and prevalence of potato scab. Soil Science and Plant Nutrition 31: 411–418.Google Scholar
  17. Hensler, R.F., R.J. Olsen, and O.J. Attoe. 1970. Effect of soil pH and application rate of dairy cattle manure on yield and recovery of twelve plant nutrients by corn. Agronomy Journal 62: 828–830.CrossRefGoogle Scholar
  18. Horsfall, J.G., and R.W. Barratt. 1945. An improved grading system for measuring plant diseases. Phytopathology 35: 655.Google Scholar
  19. Huang, C.L., and E.E. Schulte. 1985. Digestion of plant tissue for analysis by ICP emission spectroscopy. Communications in Soil Science and Plant Analysis 16: 943–958.CrossRefGoogle Scholar
  20. Huber, D.M., and R.D. Watson. 1970. Effect of organic amendment on soil-borne plant pathogens. Phytopathology 60: 22–26.CrossRefGoogle Scholar
  21. Johanson, A., and H.D. Thurston. 1990. The effect of cultivar maturity on the resistance of potatoes to early blight caused by Alternaria solani. American Potato Journal 67: 615–623.CrossRefGoogle Scholar
  22. Kelling, K.A., L.G. Bundy, S.M. Combs, and J.B. Peters. 1998. Soil test recommendations for field, vegetable and fruit crops. UWEX Publication 2809, 45. Madison: University of Wisconsin-Extension.Google Scholar
  23. Kelling, K.A., P.E. Speth, A.J. Bussan, W.R. Stevenson, and R.V. James. 2003. Effect of fumigation and Quadris on optimum N management and tuber sugar levels. In Proceedings of the Annual Wisconsin Potato Meetings 16: 171–179.Google Scholar
  24. Kelling, K.A., R.P. Wolkowski, A. Kelman, P.E. Fixen, and K.E. Simmons. 1984. Preliminary results of Ca studies with potatoes. In Proceedings of the Midwest Food Processing Conference, LaCrosse, Wisconsin, pp. 59–67.Google Scholar
  25. Lachat Instruments. 1992a. Nitrate in 2 M KCl soil extracts. Mequon, WI: Lachat Instruments.Google Scholar
  26. Lachat Instruments. 1992b. Total Kjeldahl nitrogen in soil/plants. Mequon, WI: Lachat Instruments. Google Scholar
  27. Lambert, D.H., and F.E. Manzer. 1991. Relationship of calcium to potato scab. Phytopathology 81: 632–636.CrossRefGoogle Scholar
  28. Lazarovits, G., K.L. Conn, and J. Potter. 1999. Reduction of potato scab, verticillium wilt and nematodes by soymeal and meat and bone meal in two Ontario potato fields. Canadian Journal of Plant Pathology 21: 345–353.CrossRefGoogle Scholar
  29. Lazarovits, G., K.L. Conn, P.A. Abbasi, N. Soltani, W. Kelly, E. McMillan, R.D. Peters, and K.A. Drake. 2008a. Reduction of potato tuber diseases with organic soil amendments in two Prince Edward Island fields. Canadian Journal of Plant Pathology 30: 37–45.CrossRefGoogle Scholar
  30. Lazarovits, G., P. Abbasi, K. Conn, J. Hill, and S. Hemmingsen. 2008b. Fish emulsion and liquid swine manure: model systems for development of organic amendments as fertilizers with disease suppressive properties. Summa Pathology 34: 156–203.CrossRefGoogle Scholar
  31. Lee, C.R., and M.L. MacDonald. 1977. Influence of soil amendments on potato growth, mineral nutrition, and tuber yield and quality on very strongly acid soils. Soil Science Society of America Journal 41: 573–577.CrossRefGoogle Scholar
  32. Liu, D., N.A. Anderson, and L.L. Kinkel. 1995. Biological control of potato scab in the field with antagonistic Streptomyces scabies. Phytopathology 85: 837–831.CrossRefGoogle Scholar
  33. Loria, R. 2001. Common scab. In Compendium of Potato Diseases, 2nd ed, ed. W.R. Stevenson et al., 14–15. St. Paul: American Phytopathology Society.Google Scholar
  34. Maier, N.A., A.P. Dahlenburg, and C.M.J. Williams. 1994. Effect of nitrogen, phosphorus and potassium on yield, specific gravity, crisp colour and tuber chemical composition of potato (Solanum tuberosum L.) cv. Kennebec. Australian Journal of Experimental Agriculture 34: 813–824.CrossRefGoogle Scholar
  35. McGregor, A.J., and G.C.S. Wilson. 1964. The effect of application of manganese sulphate to a neutral soil upon the yield of tubers and the incidence of common scab in potatoes. Plant and Soil 20: 59–64.CrossRefGoogle Scholar
  36. McGregor, A.J., and G.C.S. Wilson. 1966. The influence of manganese on the development of potato scab. Plant and Soil 25: 3–16.CrossRefGoogle Scholar
  37. Miller, J.S., and C.J. Rosen. 2005. Interactive effects of fungicide programs and nitrogen management on potato yield and quality. American Journal of Potato Research 82: 399–409.CrossRefGoogle Scholar
  38. Mitchell, M.J. 1986. Soil Survey of Langlade County, Wisconsin. Washington: U.S. Department of Agriculture-Soil Conservation Service, U.S. Government Printing Office.Google Scholar
  39. Mortvedt, J.J., M.H. Fleischfresser, K.C. Berger, and H.M. Darling. 1961. The relation of soluble manganese to the incidence of common scab in potatoes. American Potato Journal 38: 95–100.CrossRefGoogle Scholar
  40. Nannipieri, P., L. Muccini, and C. Ciardi. 1983. Microbial biomass and enzyme activities: Production and persistence. Soil Biology and Biochemistry 15: 679–685.CrossRefGoogle Scholar
  41. Nelson, D.W., and L.E. Sommers. 1973. Determination of total nitrogen in plant material. Agronomy Journal 65: 109–112.CrossRefGoogle Scholar
  42. Odland, T.E., and H.B. Allbritten. 1949. Soil reaction and calcium supply as factors influencing the yield of potatoes and the occurrence of scab. Agronomy Journal 42: 269–275.CrossRefGoogle Scholar
  43. Oswald, J.W., and O.A. Lorenz. 1956. Soybeans as a green manure crop for the prevention of potato scab. Phytopathology 46: 22 (Abstract).Google Scholar
  44. Polizotto, K.R., G.E. Wilcox, and C.M. Jones. 1975. Response of growth and mineral composition of potato to nitrate and ammonium nitrogen. Journal of the American Horticultural Society 100: 165–168.Google Scholar
  45. Powelson, M.L., K.B. Johnson, and R.C. Rowe. 1993. Management of diseases caused by soil-borne pathogens. In Potato Health Management, ed. R.C. Rowe, 149–158. St. Paul: American Phytopathology Society Press.Google Scholar
  46. Pratt, P.F. 1978. Leaching of cations and chloride from manure applied to an irrigated soil. Journal of Environmental Quality 7: 513–516.CrossRefGoogle Scholar
  47. Rogers, P.F. 1969. Organic manuring for potato scab control and its relation to soil manganese. Annals of Applied Biology 63: 371–378.CrossRefGoogle Scholar
  48. SAS Institute. 1990. SAS/Stat User’s Guide. Version 6. Cary: NC SAS Institute.Google Scholar
  49. Schulte, E.E., K.A. Kelling, J.B. Peters, and S.M. Combs. 2000. Plant analysis interpretations used in the revised Wisconsin program. New Horizons in Soil Science #7-2000. Department of Soil Science, University of Wisconsin-Madison.Google Scholar
  50. Tenuta, M., K.L. Conn, and G. Lazarovits. 2002. Volatile fatty acids in liquid swine manure can kill microsclerotia of Verticillium dahliae. Phytopathology 92: 548–552.PubMedCrossRefGoogle Scholar
  51. Terman, G.L., F.H. Stienmetz, and A. Hawkins. 1948. Effects of certain soil conditions and treatments upon potato yields and the development and control of potato scab. Maine Agricultural Experiment Station Bulletin no. 463.Google Scholar
  52. Tester, C.F. 1990. Organic amendment effects on physical and chemical properties of a sandy soil. Soil Science Society of America Journal 54: 827–831.CrossRefGoogle Scholar
  53. Tiarks, A.E., A.P. Mazurak, and L. Chesnin. 1974. Physical and chemical properties of soil associated with heavy applications of manure from cattle feedlots. Soil Science Society of America Proceedings 38: 826–380.CrossRefGoogle Scholar
  54. Westermann, D.T. 1993. Fertility management. In Potato Health Management, ed. R.C. Rowe, 77–86. St. Paul: American Phytopathology Society Press.Google Scholar
  55. Westermann, D.T., T.A. Tindall, D.W. Jones, and R.L. Hurst. 1994. Nitrogen and potassium fertilization of potatoes: Yield and specific gravity. American Potato Journal 71: 417–431.CrossRefGoogle Scholar
  56. Whalen, J.K., C. Chang, G.W. Clayton, and J.P. Carefoot. 2000. Cattle manure amendments can increase the pH of acid soils. Soil Science Society of America Journal 64: 962–966.CrossRefGoogle Scholar
  57. Wheeler, H.J. and G.M. Tucker. 1895. Upon the effect of barnyard manure and various compounds of sodium, calcium and nitrogen upon the development of the potato scab. Rhode Island Agricultural Experiment Station Bulletin no. 33.Google Scholar
  58. Wilhelm, S. 1955. Longevity of Verticillium wilt fungus in the laboratory and the field. Phytopathology 45: 180–181.Google Scholar

Copyright information

© Potato Association of America 2012

Authors and Affiliations

  • Meghan A. Curless
    • 1
  • Keith A. Kelling
    • 1
  • Phillip E. Speth
    • 1
  • Walter R. Stevenson
    • 2
  • R. Vaughan James
    • 2
  1. 1.Department of Soil ScienceUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Plant PathologyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations