American Journal of Potato Research

, Volume 89, Issue 4, pp 269–276 | Cite as

An Experimental Study of Pressure Flattening During Long-Term Storage in Four Russet Potato Cultivars with Differences in At-Harvest Tuber Moisture Loss

  • Henry C. Castleberry
  • Sastry S. JayantyEmail author


Pressure flattening is a major concern in long-term commercial potato storage which limits the duration of storage or reduces the quality of stored potatoes. Canela Russet, Centennial Russet, Rio Grande Russet, and Russet Norkotah potatoes were treated to induce moisture loss at room temperature and at 37 °C. These tubers were evaluated after three different durations of storage for pressure flattening, using a ventilated container design. Differences in pressure flattening development occurred within a cultivar as a result of moisture loss treatments as well as among the cultivars. There was no difference in the storage time required for Centennial Russet to pressure flatten beyond USDA grade tolerances when the tubers had 5 % (4.99 %) or less than one percent (0.52 %) weight loss prior to storage. Russet Norkotah tubers that lost less than 1 % (0.37 %) weight could be stored 6 additional weeks before the tubers were out-of-grade compared to those that lost nearly 4 % weight (3.82 %). Preventing moisture loss during harvest and storage may not considerably decrease pressure flattening for some cultivars but may provide additional months of profitable shipping for other cultivars.


Solanum tuberosum Potato bruise Pressure flattening Potato storage Canela Russet Russet Norkotah Rio Grande Russet Centennial Russet 


El compactamiento por presión es una gran preocupación en el almacenamiento de papa comercial a largo plazo, lo que limita la duración del almacenaje o reduce la calidad de la papa almacenada. Se trataron las variedades Canela Russet, Centennial Russet, Rio Grande Russet, y Russet Norkotah para inducirles pérdida de humedad a temperatura ambiente y a 37 °C. Se evaluaron estos tubérculos después de tres duraciones diferentes de almacenamiento para aplastamiento por presión, usando un diseño de contenedor ventilado. Se presentaron diferencias en el desarrollo del aplanado por presión dentro de una variedad como resultado de tratamientos de pérdida de humedad, así como también entre variedades. No hubo diferencia en el tiempo de almacenamiento requerido para Centennial Russet en aplanamiento por presión mas allá de los grados de tolerancia USDA cuando los tubérculos tuvieron cinco porciento (4.99 %) o menos de uno porciento (0.52 %) de pérdida de peso previo al almacenamiento. Los tubérculos de Russet Norkotah, que perdieron menos del uno porciento (0.37 %) de peso, pudieron almacenarse seis semanas adicionales, antes de que salieran de la calidad estándar, comparados con aquellos que perdieron cerca del cuatro porciento de peso (3.82 %). La prevención en la pérdida de humedad durante la cosecha y el almacenamiento pudiera no disminuir considerablemente el aplanamiento por presión para algunas variedades, pero proporcionaría meses adicionales de envíos con ganancias para otras.



Authors acknowledge Kendall Nye, MountainKing Inc. for contributions in the design of the ventilated container system and Dr. Venu Perla and Elita Castleberry for their help in bruise area and bruise count. This work is partially supported by Colorado Potato Administrative Committee Area II and USDA—ARS grant (Award number 58-3655-0-632).




  1. Bajema, R.W., G.M. Hyde, and A.L. Baritelle. 1998. Turgor and temperature effects on dynamic failure properties of potato tuber tissue. Transactions of the ASAE 41: 741–746.Google Scholar
  2. Baritelle, A.J., and G.M. Hyde. 2003. Specific gravity and cultivar effects on potato tuber impact sensitivity. Postharvest Biology and Biotechnology 29: 279–286.CrossRefGoogle Scholar
  3. Baritelle, A.L., G.M. Hyde, and R.E. Thornton. 2000. Influence of early season nitrogen application pattern on impact sensitivity in Russet Burbank potato tubers. Postharvest Biology and Biotechnology 19: 273–277.CrossRefGoogle Scholar
  4. Caldiz, D.O., L.V. Fernandez, and M.H. Inchausti. 2001. Maleic hydrazide effects on tuber yield, sprouting characteristics, and french fry processing quality in various potato (Solanum tuberosum L.) cultivars grown under Argentinian conditions. American Journal of Potato Research 78: 119–128.CrossRefGoogle Scholar
  5. Corsini, D., M. Thornton, and J. Stark. 1999. Factors contributing to the blackspot bruise potential of Idaho potato fields. American Journal of Potato Research 76: 221–226.CrossRefGoogle Scholar
  6. Hemmat, A. 1987. Stress/strain analysis and internal bruising in potato tubers. Ph.D Thesis. Cranfield Institute of Technology. Silsoe College, Bedford.Google Scholar
  7. Hughes, J.C. 1980. Role of tuber properties in determining the susceptibility of potatoes to damage. Annals of Applied Biology 96: 344–345.Google Scholar
  8. Kleinschmidt, G., and M. Thornton, 1991. Bruise-free potatoes: our goal. Bulletin #725 University of Idaho, Cooperative Extension System.Google Scholar
  9. Konstankiewicz, K., and A. Zdunek. 2001. Influence of turgor and cell size on the cracking of potato tissue. International Agrophysics 15: 27–30.Google Scholar
  10. Kunkel, R., and W.H. Gardner. 1965. Potato tuber hydration and its effect on blackspot of Russet Burbank potatoes in Columbia basin of Washington. American Potato Journal 42: 109–124.CrossRefGoogle Scholar
  11. Lin, T.T., and R.E. Pitt. 1986. Rheology of apple and potato as affected by cell turgor pressure. Journal of Texture Studies 17: 291–313.CrossRefGoogle Scholar
  12. Lulai, E.C., M.T. Glynn, and P.H. Orr. 1996. Cellular changes and physiological responses to tuber pressure bruising. American Potato Journal 73: 197–209.CrossRefGoogle Scholar
  13. Lulai, E.C., M.T. Glynn, and P.H. Orr. 2000. Cellular changes and physiological responses to pressure-bruising. Postharvest Biology and Biotechnology 19: 273–277.CrossRefGoogle Scholar
  14. Lutman, B.F. 1934. Carbon dioxide formation by clean and scabby potatoes. Journal of Agricultural Research 48(12): 1135–1144.Google Scholar
  15. Muthukumarappan, K., S. Gunasekaran, D. Curwen, and F.H. Buelow. 1994. Investigations on potato storage management for control of pressure bruising. ASAE Paper No. 946582. Presented at the ASAE 1994 Winter meeting, December 13–16, Atlanta, Georgia.Google Scholar
  16. Nilson, S.B., C.H. Hertz, and S. Falk. 1958. On the relation between turgor pressure and tissue rigidity II. Physiologia Plantarum 11: 818–837.CrossRefGoogle Scholar
  17. Olsen, N., and N. Oberg. 2003. How to keep potatoes “in shape”—managing pressure bruise. Potato Grower 9: 1–2.Google Scholar
  18. Rastovski, A., A. Van Es, et al. 1981. Storage of potatoes: Post-harvest behaviour, store design, storage practice, handling. Wageningen: Centre for Agricultural Publishing and Documentation.Google Scholar
  19. Rowe, R.C. (ed.). 1993. Potato health management. St. Paul: American Phytopathological Society Press.Google Scholar
  20. Shetty, Kiran K. 1988. Potato storage management for disease control. University of Idaho Extension. Idaho Center for Potato Research and Education.Google Scholar
  21. Smith, O.1933. Studies of potato storage. N.Y. (Cornell) Agriculture Experimental Station. Bullitin.553: 57.Google Scholar
  22. Thornton, M., and W. Bohl. 1998. Preventing potato bruise damage. University of Idaho Extension Publications BUL 725.Google Scholar
  23. Zdunek, A., and J. Bednarczyk. 2006. Effect of mannitol treatment on ultrasound emission during texture profile analysis of potato and apple tissue. Journal of Texture Studies 37: 339–359.CrossRefGoogle Scholar
  24. Zdunek, A., and M. Umeda. 2005. Influence of cell size and cell wall volume fraction on failure properties of potato and carrot tissue. Journal of Texture Studies. 36: 25–43.CrossRefGoogle Scholar

Copyright information

© Potato Association of America 2012

Authors and Affiliations

  1. 1.San Luis Valley Research Center, Department of Horticulture and Landscape ArchitectureColorado State UniversityCenterUSA

Personalised recommendations