Skip to main content
Log in

Stability and Broad-Sense Heritability of Mineral Content in Potato: Calcium and Magnesium

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Calcium and magnesium are two minerals that play prominent roles in animal and plant metabolism. The purpose of this study was to determine if genetic variation exists among advanced potato breeding clones for tuber calcium and magnesium content and the extent of genotype x environment interactions on these two traits. Ten, 13, and 13 clones were evaluated in the Tri-State, Western Regional, and Western Regional Red/Specialty Trials, respectively. Tuber calcium content ranged from 266 to 944 μg-g−1 DW; magnesium from 787 to 1,089 μg-g−1 DW. Genotype x environment interactions were significant in all trials. However, only the Tri-State for calcium and the Western Regional Red/Specialty trials for both minerals displayed a significant source of variation for genotypes. Broad-sense heritabilities for tuber calcium content were 0.65, 0.37 and 0 in the Tri-State, Western Regional, and Western Regional Red/Specialty Trials, respectively. Broad-sense heritabilities for tuber magnesium content were 0.57, 0, and 0.72 in the Tri-State, Western Regional, and Western Regional Red/Specialty Trials, respectively. Potato is not a rich source of either calcium or magnesium for the human diet, but genetic variation exists among potato clones that might be useful for plant health.

Resumen

El calcio y el magnesio son dos minerales que juegan papeles prominentes en el metabolismo de plantas y animales. El propósito de este estudio fue determinar si existe variación genética entre clones de papa avanzados para el contenido de calcio y magnesio en el tubérculo y el alcance de las interacciones genotipo x medio ambiente en estos dos caracteres. Se evaluaron 10, 13 y 13 clones de los ensayos de Tres-Estados, Regional del Oeste y Regional del Oeste Especialidad en Rojas, respectivamente. El contenido de calcio en el tubérculo varió de 266 a 944 μg por gramo de peso fresco; el de magnesio fue de 787 a 1,089 μg g-1DW. Las interacciones genotipo x medio ambiente fueron significativas en todos los ensayos. No obstante, solo las pruebas del Tres-Estados para calcio y la Regional del Oeste Especialidad en Rojas para ambos minerales exhibió una fuente significativa de variación para genotipos. Las heredabilidades en amplio sentido para el contenido de calcio del tubérculo fueron de 0.65, 0.37 y 0 para los ensayos de Tres-Estados, Regional del Oeste, y Regional del Oeste Especialidad en Rojas respectivamente. Las heredabilidades en amplio sentido para el contenido de magnesio en el tubérculo fueron de 0.57, 0 y 0.72, en los ensayos de Tres-Estados, Regional del Oeste y Regional del Oeste Especialidad en Rojas, respectivamente. La papa no es una fuente rica ni de calcio ni de magnesio para la dieta humana, pero existe variación genética entre los clones de papa que pudieran ser útiles para la sanidad de la planta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andre, C.M., M. Ghislain, P. Bertin, O. Mouhssin, M. del Rosario Herrera, L. Hoffmann, J.-F. Hausman, Y. Larondelle, and D. Evers. 2007. Andean potato cultivars (Solanum tuberosum L.) as a source of antioxidant and mineral micronutrients. Journal of Agricultural and Food Chemistry 55: 366–378.

    Article  PubMed  CAS  Google Scholar 

  • Bamberg, J.B., J.P. Palta, L.A. Peterson, M. Martin, and A.R. Krueger. 1993. Screening tuber-bearing Solanum (Potato) germplasm for efficient accumulation of tuber calcium. American Potato Journal 70: 219–226.

    Article  CAS  Google Scholar 

  • Bamberg, J.B., J.P. Palta, L.A. Peterson, M. Martin, and A.R. Krueger. 1998. Fine screening potato (Solanum) species germplasm for tuber calcium. American Journal of Potato Research 75: 181–186.

    Article  CAS  Google Scholar 

  • Bangerth, F. 1979. Calcium-related physiological disorders of plants. Annual Review of Phytopathology 17: 97–122.

    Article  CAS  Google Scholar 

  • Brown, C.R., K.G. Haynes, M. Moore, M.J. Pavek, D.C. Hane, S.L. Love, R.G. Novy, and J.C. Miller Jr. 2010. Stability and broad-sense heritability of mineral content in potato: Iron. American Journal of Potato Research 87: 390–396.

    Article  CAS  Google Scholar 

  • Brown, C.R., K.G. Haynes, M. Moore, M.J. Pavek, D.C. Hane, S.L. Love, R.G. Novy, and J.C. Miller Jr. 2011. Stability and broad-sense heritability of mineral content in potato: Zinc. American Journal of Potato Research 88: 238–244.

    Article  CAS  Google Scholar 

  • Casañas-Rivero, R., P. Suárez-Hernández, E.M. Rodríguez-Rodríguez, J. Darias-Martín, and B.C. Díaz-Romero. 2003. Mineral concentrations in cultivars of potatoes. Food Chemistry 83: 247–253.

    Article  Google Scholar 

  • Chucka, J. 1934. Magnesium deficiency in Aroostook potato soils. American Potato Journal 11: 29–35.

    Article  CAS  Google Scholar 

  • de Haan, S., G. Burgos, J. Arcos, R. Ccanto, M. Scurrah, E. Salas, and M. Bonierbale. 2010. Traditional processing of black and white chuño in the Peruvian Andes: Regional variants and effect on the mineral content of native potato cultivars. Economic Botany 64: 217–234.

    Article  Google Scholar 

  • Frossard, E., M. Bucher, F. Mächler, A. Mozafar, and R. Hurrell. 2000. Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. Journal of the Science of Food and Agriculture 80: 861–879.

    Article  CAS  Google Scholar 

  • Holland, J.B., W.E. Nyquist, and C.T. Cervantes-Martinez. 2003. Estimating and interpreting heritability for plant breeding: An update. Plant Breeding Reviews 22: 9–112.

    Google Scholar 

  • Kang, M.S. 1989. A new SAS program for calculating stability-variance parameters. Journal of Heredity 80: 415.

    Google Scholar 

  • Kleinhenz, M.D., and J.P. Palta. 2002. Root zone calcium modulates the response of potato plants to heat stress. Physiologia Plantarum 115: 111–118.

    Article  PubMed  CAS  Google Scholar 

  • Knapp, S.J., W.W. Stroup, and W.M. Ross. 1985. Exact confidence intervals for heritability on a progeny mean basis. Crop Science 25: 192–194.

    Article  Google Scholar 

  • McGuire, R.G., and A. Kelman. 1984. Reduced severity of Erwinia soft rot in potato tubers with increased calcium content. Phytopathology 74: 1250–1256.

    Article  CAS  Google Scholar 

  • Rastovski, A., and A. van Es. 1987. Storage of potatoes: Post-harvest behaviour, store design, storage practice, handling, 453. Pudoc: Wageningen.

    Google Scholar 

  • Sawyer, R.L., and S.L. Dallyn. 1966. Magnesium fertilization of potatoes on Long Island. American Potato Journal 43: 249–252.

    Article  Google Scholar 

  • Shukla, G.K. 1972. Some statistical aspects of partitioning genotype-environment components of variability. Heredity 29: 237–245.

    Article  PubMed  CAS  Google Scholar 

  • Subar, A.F., S.M. Krebs-Smith, A. Cook, and L.L. Kahle. 1998. Dietary sources of nutrients among US adults, 1989 to 1991. Journal of the American Dietetic Association 98: 537–547.

    Article  PubMed  CAS  Google Scholar 

  • Tzeng, K.C., A. Kelman, K.E. Simmons, and K.A. Kelling. 1986. Relations of calcium nutrition to internal brown spot of potato tubers and sub-apical necrosis of sprouts. American Potato Journal 63: 87–97.

    Article  CAS  Google Scholar 

  • Vega, S.E., J.A. Bamberg, and J.P. Palta. 1996. Potential for improving freezing stress tolerance of wild potato germplasm by supplemental calcium fertilization. American Journal of Potato Research 73: 397–409.

    Article  CAS  Google Scholar 

  • White, P.J., and R.B. Broadley. 2003. Calcium in plants. Annals of Botany 92: 487–511.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, S.R., R.M. Welch, H.F. Mayland, and D.L. Grunes. 1990. Magnesium in plants: Uptake, distribution, function and utilization by man and animals. In Metal ions in biological systems. Vol 26. Compendium on magnesium and its role in biology, nutrition and physiology, ed. H. Sigel and A. Sigel, 30–56. New York: Marcel Dekker.

    Google Scholar 

  • Woolfe, J.A. 1987. The potato in the human diet, 237. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Yencho, G.C., P.H. McCord, K.G. Haynes, and S.B. Sterrett. 2008. Internal heat necrosis of potato—A review. American Journal of Potato Research 85: 69–76.

    Article  Google Scholar 

  • Zaehringer, M.V., and H.H. Cunningham. 1971. Potato extractives: Sloughing as related to replacement of anions or cations. American Potato Journal 48: 385–389.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, C.R., Haynes, K.G., Moore, M. et al. Stability and Broad-Sense Heritability of Mineral Content in Potato: Calcium and Magnesium. Am. J. Pot Res 89, 255–261 (2012). https://doi.org/10.1007/s12230-012-9240-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-012-9240-9

Keywords

Navigation