Skip to main content
Log in

Selenium and Sulfur Content and Activity of Associated Enzymes in Selected Potato Germplasm

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Potato plants are being supplemented with selenium (Se) to enrich tubers with Se for health benefits. Se is not an essential nutrient and interferes with the metabolism of sulfur (S) in plants. The objective of the present investigation was to study the activities of Se-independent glutathione peroxidase (Se-Ind-GPx), Se-dependent glutathione peroxidase (Se-Dep-GPx), and thioredoxin reductase (TRxR) enzymes in stored potato tubers grown on a non-Se-enriched field; and assess their relationship with tuber Se and S levels. The results indicate that these enzyme activities and the Se and S levels in the tubers were significantly influenced by genotype. Se-Dep-GPx activities were influenced by Se levels in the tubers. S content of tubers of all genotypes tested were below the critical nutrition concentration. In spite of this deficiency, the levels of S (which were very high in comparison with Se) influenced the activities of Se-Ind-GPx and TRxR in the tubers. Tubers of some of the genotypes tested can supply more than the recommended dietary allowance (RDA) of Se to adult humans.

Resumen

Las plantas de papa están siendo suplementadas con selenio (Se) para enriquecer los tubérculos con Se para beneficio de la salud. El Se no es un nutrimento esencial e interfiere con el metabolismo del azufre (S) en plantas. El objetivo de la presente investigación fue estudiar las actividades de las enzimas glutatión-peroxidasa independiente de Se (Se-Ind-GPx), glutatión-peroxidasa dependiente de Se (Se-Dep-GPx) y thioredoxin reductasa (TRxR) en tubérculos de papa almacenados provenientes de un campo no enriquecido con Se; y analizar su relación con los niveles de Se y S en el tubérculo. Los resultados indican que las actividades de estas enzimas y los niveles de Se y S en tubérculos fueron influenciados significativamente por el genotipo. Las actividades de Se-Dep-GPx se influenciaron por los niveles de Se en los tubérculos. El contenido de S en tubérculos de todos los genotipos probados estuvo debajo de la concentración crítica de nutrición. A pesar de esta deficiencia, los niveles de S (que fueron muy altos en comparación de Se) influenciaron las actividades de Se-Ind-GPx y TRxR en los tubérculos. Tubérculos de algunos de los genotipos probados pueden surtir mas de lo recomendado para la dieta de Se en humanos adultos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anonymous. 2009. Peter Keogh & Sons launch ‘Selena’ potatoes naturally enriched with selenium. http://www.potatopro.com/Lists/Press%20Releases/Peter%20Keogh%20and%20Sons%2020090227.aspx#ixzz1OwSxo3a5. Accessed on June 10, 2011.

  • Baker, R.D., S.S. Baker, K. LaRosa, C. Whitney, and P.E. Newburger. 1993. Selenium regulation of glutathione peroxidase in human hepatoma cell line Hep3B. Archives of Biochemistry and Biophysics 304: 53–57.

    Article  PubMed  CAS  Google Scholar 

  • Banze, M., and H. Follmann. 2000. Organelle-specific NADPH thioredoxin reductase in plant mitochondria. Journal of Plant Physiology 156: 126–129.

    Article  CAS  Google Scholar 

  • Beeor-Tzahar, T., G. Ben-Hayyim, D. Holland, Z. Faltin, and Y. Eshdat. 1995. A stress-associated citrus protein is a distinct plant phospholipid hydroperoxide glutathione peroxidase. FEBS Letters 366: 151–155.

    Article  PubMed  CAS  Google Scholar 

  • Bethke, P.C., and S.H. Jansky. 2008. The effects of boiling and leaching on the content of potassium and other minerals in potatoes. Journal of Food Science 75: H80–H85.

    Article  Google Scholar 

  • Brown, T.A., and A. Shrift. 1982. Selenium: toxicity and tolerance in higher plants. Biological Reviews 57: 59–84.

    Article  CAS  Google Scholar 

  • Burk, R.F. 1983. Biological activity of selenium. Annual Review of Nutrition 3: 53–70.

    Article  PubMed  CAS  Google Scholar 

  • Burk, R.F., and R.A. Lawrence. 1978. Nonselenium-dependent glutathione peroxidase. In Functions of glutathione in liver and kidney, ed. H. Sies and A. Wendel, 114–119. Berlin: Springer.

    Chapter  Google Scholar 

  • Burk, R.F., G.E. Olson, and K.E. Hill. 2006. Deletion of selenoprotein P gene in the mouse. In Selenium: Its molecular biology and role in human health, 2nd ed, ed. D.L. Hatfield, M.J. Berry, and V.N. Gladyshev, 111–122. New York: Springer.

    Google Scholar 

  • Burnell, J.N. 1981. Methionyl-tRNA synthetase from Phaseolus aureus: purification and properties. Plant Physiology 67: 325–329.

    Article  PubMed  CAS  Google Scholar 

  • Burnell, J.N., and A. Shrift. 1977. Cysteinyl tRNA synthetase from Phaseolus aureus. Plant Physiology 60: 670–674.

    Article  PubMed  CAS  Google Scholar 

  • Chariot, P., and O. Bignani. 2003. Skeletal muscle disorders associated with selenium deficiency in humans. Muscle & Nerve 27: 662–668.

    Article  CAS  Google Scholar 

  • Dai, S., M. Saarinen, S. Ramaswamy, Y. Meyer, J.P. Jacquot, and H. Eklund. 1996. Crystal structure of Arabidopsis thaliana NADPH dependent thioredoxin reductase at 2.5 Å resolution. Journal of Molecular Biology 264: 1044–1057.

    Article  PubMed  CAS  Google Scholar 

  • Davidian, J.-C., Y. Hatzfield, N. Cathala, A. Tagmount, and J.J. Vidmar. 2000. Sulfate uptake and transport in plants. In Sulfur nutrition and sulfur assimilation in higher plants: molecular, biochemical and physiological aspects, ed. C. Brunold, H. Rennenberg, L.J. De Kok, I. Stuhlen, and J.-C. Davidian, 1–19. Bern: Paul Haupt.

    Google Scholar 

  • Dipierro, S., and S. De Leonardis. 1997. The ascorbate system and lipid peroxidation in stored potato (Solanum tuberosum L.) tubers. Journal of Experimental Botany 48: 779–783.

    Article  CAS  Google Scholar 

  • Ehrlich, S.D. 2009. Sulfur: Overview. http://www.umm.edu/altmed/articles/sulfur-000328.htm. Accessed on June 13, 2011.

  • Eshdat, Y., D. Holland, Z. Faltin, and G. Ben-Hayyim. 1997. Plant glutathione peroxidases. Physiologia Plantarum 100: 234–240.

    Article  CAS  Google Scholar 

  • Eustice, D.C., F.J. Kull, and A. Shrift. 1981. Selenium toxicity: Aminoacylation and peptide bond formation with selenomethionine. Plant Physiology 67: 1054–1058.

    Article  PubMed  CAS  Google Scholar 

  • Faltin, Z., L. Camoin, G. Ben-Hayyim, A. Perl, T. Beeor-Tzahar, A.D. Strosberg, D. Holland, and Y. Eshdat. 1998. Cysteine is the presumed catalytic residue of Citrus sinensis phospholipid hydroperoxide glutathione peroxidase over-expressed under salt stress. Physiologia Plantarum 104: 741–746.

    Article  CAS  Google Scholar 

  • Ferri, T., G. Favero, and M. Frasconi. 2007. Selenium speciation in foods: Preliminary results on potatoes. Microchemical Journal 85: 222–227.

    Article  CAS  Google Scholar 

  • Food and Nutrition Board, Institute of Medicine. 2000. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. Washington: National Academy Press.

    Google Scholar 

  • Gelhaye, E., N. Rouhier, N. Navrot, and J.P. Jacquot. 2005. The plant thioredoxin system (Review). Cellular and Molecular Life Sciences 62: 24–35.

    Article  PubMed  CAS  Google Scholar 

  • Gladyshev, V.N. 2006. Selenoproteins and selenoproteomes. In Selenium: Its molecular biology and role in human health, 2nd ed, ed. D.L. Hatfield, M.J. Berry, and V.N. Gladyshev, 99–114. New York: Springer.

    Google Scholar 

  • Hatfield, D., I.S. Choi, S. Mischke, and L.D. Owens. 1992. Selenocysteinyl-tRNAs recognize UGA in Beta vulgaris, a higher plant, and in Gliocladium virens, a filamentous fungus. Biochemical and Biophysical Research Communications 184: 254–259.

    Article  PubMed  CAS  Google Scholar 

  • Hell, R. 1997. Molecular physiology of plant sulfur metabolism (Review). Planta 202: 138–148.

    Article  PubMed  CAS  Google Scholar 

  • Higdon, J., and V.J. Drake. 2007. Selenium. Micronutrient Information Center, Linus Pauling Institute, Oregon State University, USA. http://lpi.oregonstate.edu/infocenter/minerals/selenium/ . Accessed 28 September 2011.

  • Holland, D., G. Ben-Hayyim, Z. Faltin, L. Camoin, A.D. Strosberg, and Y. Eshdat. 1993. Molecular characterization of salt-stress-associated protein in citrus: protein and cDNA sequence homology to mammalian glutathione peroxidases. Plant Molecular Biology 21: 923–927.

    Article  PubMed  CAS  Google Scholar 

  • Hopkins, L., S. Parmar, A. Blaszczyk, H. Hesse, R. Hoefgen, and M.J. Hawkesford. 2005. O-acetylserine and the regulation of expression of genes encoding components for sulfate uptake and assimilation in potato. Plant Physiology 138: 433–440.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, J.C. 1996. Multiple comparisons: theory and methods. Boca Raton: Chapman & Hall/CRC.

    Google Scholar 

  • Jones, D.P., L. Eklöw, H. Thor, and S. Orrenius. 1981. Metabolism of hydrogen peroxide in isolated hepatocytes: relative contributions of catalase and glutathione peroxidase in decomposition of endogenously generated H2O2. Archives of Biochemistry and Biophysics 210: 505–516.

    Article  PubMed  CAS  Google Scholar 

  • Kioussi, C., and P.D. Whanger. 2006. Selenoprotein W in development and oxidative stress. In Selenium: Its molecular biology and role in human health, 2nd ed, ed. D.L. Hatfield, M.J. Berry, and V.N. Gladyshev, 135–140. New York: Springer.

    Google Scholar 

  • Kumar, G.N., and N.R. Knowles. 1993. Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme activities during aging and sprouting of potato (Solanum tuberosum) seed-tubers. Plant Physiology 102: 115–124.

    PubMed  CAS  Google Scholar 

  • Kumar, G.N., and N.R. Knowles. 1996. Oxidative stress results in increased sinks for metabolic energy during aging and sprouting of potato seed-tubers. Plant Physiology 112: 1301–1313.

    PubMed  CAS  Google Scholar 

  • Lawrence, R.A., L.K. Parkhill, and R.F. Burk. 1978. Hepatic cytosolic non selenium-dependent glutathione peroxidase activity: its nature and the effect of selenium deficiency. The Journal of Nutrition 108: 981–987.

    PubMed  CAS  Google Scholar 

  • Lei, X.G., W.H. Cheng, and J.P. McClung. 2007. Metabolic regulation and function of glutathione peroxidase-1. Annual Review of Nutrition 27: 41–61.

    Article  PubMed  CAS  Google Scholar 

  • McDowell, L.R. 2003. Minerals in animal and human nutrition. Amsterdam: Elsevier.

    Google Scholar 

  • Miller, R.O., and J. Kotoby-Amacher. 1995. Nitrate/perchloric wet ashing open vessel in western states laboratory proficiency testing program, soil & plant analytical methods, Version 2.00, Western States Program, pp 71–73.

  • Navarro-Alarcon, M., and M.C. Lopez-Martinez. 2000. Essentiality of selenium in the human body: Relationship with different diseases. Science of the Total Environment 249: 347–371.

    Article  PubMed  CAS  Google Scholar 

  • Peixoto, F., J. Vicente, and V.M.C. Madeira. 2004. A comparative study of plant and animal mitochondria exposed to paraquat reveals that hydrogen peroxide is not related to the observed toxicity. Toxicology in Vitro 18: 733–739.

    Article  PubMed  CAS  Google Scholar 

  • Perla, V., D.G. Holm, and S.S. Jayanty. 2012. Effects of cooking methods on polyphenols, pigments and antioxidant activity in potato tubers. LWT- Food Science and Technology 45: 161–171.

    Article  CAS  Google Scholar 

  • Reilly, C. 1996. Introduction. Selenium in food and health. London: Blackie Academic & Professional.

    Google Scholar 

  • Rojas-Beltran, J.A., M. Dejaeghere, A.A. Kotb, and P.D. Jardin. 2000. Expression and activity of antioxidant enzymes during potato tuber dormancy. Potato Research 43: 383–393.

    Article  CAS  Google Scholar 

  • Rosenthal, M.D., and R.H. Glew. 2009. Medical biochemistry: Human metabolism in health and disease. Hoboken: Wiley.

    Google Scholar 

  • Seppänen, M., M. Turakainen, and H. Hartikainen. 2003. Selenium effects on oxidative stress in potato. Plant Science 165: 311–319.

    Article  Google Scholar 

  • Shahpiri, A., B. Svensson, and C. Finnie. 2008. The NADPH-dependent thioredoxin reductase/thioredoxin system in germinating barley seeds: Gene expression, protein profiles, and interactions between isoforms of thioredoxin h and thioredoxin reductase. Plant Physiology 146: 789–799.

    Article  PubMed  CAS  Google Scholar 

  • Shrift, A. 1969. Aspects of selenium metabolism in higher plants. Annual Review of Plant Physiology 20: 475–494.

    Article  CAS  Google Scholar 

  • Soltanpour, P.N., J.B. Jones Jr., and S.M. Workman. 1982. Optical emission spectrometry (chapter 3; method 3-5.5). In Methods of soil analysis, Part 2-Chemical and microbiological properties, 2nd ed, ed. A.L. Page, 59–62. Madison: American Society of Agronomy, Inc. and Soil Science Society of America Inc.

    Google Scholar 

  • Spychalla, J.P., and S.L. Desborough. 1990. Superoxide dismutase, catalase, and α-tocopherol content of stored potato tubers. Plant Physiology 94: 1214–1218.

    Article  PubMed  CAS  Google Scholar 

  • Stadtman, T.C. 1980. Selenium-dependent enzymes. Annual Review of Biochemistry 49: 93–110.

    Article  PubMed  CAS  Google Scholar 

  • Tamura, T., and T.C. Stadtman. 1996. A new selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity. Proceedings of the National Academy of Sciences of the United States of America 93: 1006–1011.

    Article  PubMed  CAS  Google Scholar 

  • Terry, N., A.M. Zayed, M.P. de Souza, and A.S. Tarun. 2000. Selenium in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 51: 401–432.

    Article  PubMed  CAS  Google Scholar 

  • Turakainen, M., H. Hartikainen, P. Ekholm, and M.M. Seppanen. 2006. Distribution of selenium in different biochemical fractions and raw darkening degree of potato (Solanum tuberosum L.) tubers supplemented with selenate. Journal of Agricultural and Food Chemistry 54: 8617–8622.

    Article  PubMed  CAS  Google Scholar 

  • Turkainen, M. 2007. Selenium and its effects on growth, yield and tuber quality in potato. Thesis, University of Helsinki, Finland.

  • Walworth, J.L., and J.E. Muniz. 1993. A compendium of tissue nutrient concentrations for field-grown potatoes. American Poato Journal 70: 579–597.

    Article  CAS  Google Scholar 

  • White, P.J., H.C. Bowen, P. Parmaguru, M. Fritz, W.P. Spracklen, R.E. Spidy, M.C. Meacham, A. Mead, M. Harriman, L.J. Trueman, B.M. Smith, B. Thomas, and M.R. Broadley. 2004. Interactions between selenium and sulphur nutrition in Astragalus thaliana. Journal of Experimental Botany 55: 1927–1937.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jim Self, Soil, Water, and Plant Testing Laboratory, Colorado State University, Fort Collins for estimating Se and S in the tuber samples; and Dr. Robert Davidson for proof-reading this manuscript. This work is partially supported by a grant from the Colorado Department of Agriculture through the USDA’s Specialty Crop Block Grant Program (award #10991) and Colorado Potato Administrative Committee Area II.

Disclaimers

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sastry S. Jayanty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perla, V., Holm, D.G. & Jayanty, S.S. Selenium and Sulfur Content and Activity of Associated Enzymes in Selected Potato Germplasm. Am. J. Pot Res 89, 111–120 (2012). https://doi.org/10.1007/s12230-011-9232-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-011-9232-1

Keywords

Navigation