Skip to main content
Log in

Vitamin B1 Content in Potato: Effect of Genotype, Tuber Enlargement, and Storage, and Estimation of Stability and Broad-Sense Heritability

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Thiamine pyrophosphate (vitamin B1) is an essential nutrient in the human diet, and is often referred as the energy vitamin. Potato contains modest amounts of thiamine. However, the genetic variation of thiamine concentrations in potato has never been investigated. In this study, we determined thiamine concentrations in freshly-harvested unpeeled tubers of 54 potato clones, the majority of them originating from the Pacific Northwest Potato Development Program. Tubers from 39 clones were collected from four different environmental conditions. Thiamine concentrations ranged from 292 to 1,317 ng g−1 fresh weight, which gives a good estimate of the genetic variation available in Solanum tuberosum ssp. tuberosum. Thirteen clones/varieties contained >685 ng g−1 fresh weight and four had >800 ng g−1 fresh weight over multiple harvests, indicating that these genotypes would contribute a significant amount of thiamine in the diet (>10% of the Recommended Daily Allowance based on a 175- or 150-g serving, respectively). Broad-sense heritability for thiamine content was calculated as 0.49 with a 95% confidence interval of 0.21–0.72, suggesting that genetic variation accounted for about 50% of the observed variation. There were significant clone and clone x environment effects. After accounting for environmental variation, 25 clones were unstable across environments. Tubers harvested at a mature stage late in the growing season had higher amounts of thiamine than tubers harvested at a young stage early in the season. Storage at cold temperature did not lead to significant thiamine loss; instead, thiamine concentrations slightly increased during storage in some genotypes. These results suggest that increasing the concentration of thiamine in potato is feasible and that all potato varieties may one day be a significant source of thiamine in the human diet.

Resumen

La tiamina-pirofosfato (vitamin B1) es un nutriente esencial en la dieta humana, y a menudo se refiere a ella como la vitamina de la energía. La papa contiene cantidades modestas de tiamina. No obstante, la variación genética de las concentraciones de tiamina en papa nunca se ha investigado. En este estudio determinamos las concentraciones de tiamina en tubérculos sin pelar recién cosechados de cincuenta y cuatro clones de papa, la mayoría de ellos se originaron del Programa de Desarrollo de Papa del Pacífico-Noroeste. Se colectaron tubérculos de treinta y nueve clones de cuatro diferentes condiciones ambientales. Las concentraciones de tiamina variaron de292 a 1,317 ng g-1 de peso fresco, lo que da una buena estimación de la variación genética disponible en Solanum tuberosum ssp. Tuberosum. Trece clones/variedades contenían >685 ng g-1 de peso fresco y cuatro tuvieron >800 ng g-1 de peso fresco en múltiples cosechas, indicando que estos genotipos contribuirían con una cantidad significativa de tiamina en la dieta (>10% de la cantidad recomendada diariamente basada en un 175 o 150 g por porción, respectivamente). Se calculó la heredabilidad en amplio sentido para el contenido de tiamina como 0.49 con un intervalo de confianza de 95% de 0.21–0.72, lo que sugiere que la variación genética contó para cerca de 50% de la variación observada. Hubo efectos significativos de clon y de clon x ambiente. Después de contabilizar para la variación por el ambiente, 25 clones fueron inestables entre ambientes. Los tubérculos cosechados en un estado maduro tarde en el ciclo de cultivo tuvieron cantidades más altas de tiamina que los tubérculos cosechados en un estado joven temprano en el ciclo. El almacenamiento a baja temperatura no condujo a pérdida significativa de tiamina; más bien, las concentraciones de tiamina aumentaron ligeramente durante el almacenamiento en algunos genotipos. Estos resultados sugieren que es posible el aumento en la concentración de tiamina y que todas las variedades de papa pudieran algún día ser una fuente significativa de tiamina en la dieta humana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alba, R., A. Phillips, S. Mackie, N. Gillikin, C. Maxwell, P. Brune, W. Ridley, J. Fitzpatrick, M. Levine, and S. Harris. 2010. Improvements to the international life sciences institute crop composition database. Journal of Food Composition and Analysis 23: 741–748.

    Article  Google Scholar 

  • Augustin, J. 1975. Variations in the nutritional composition of fresh potatoes. Journal of Food Science 40: 1295–1299.

    Article  CAS  Google Scholar 

  • Augustin, J., S.R. Johnson, C. Teitzel, R.B. Toma, R.L. Shaw, R.H. True, J.M. Hogan, and R.M. Deutsch. 1978a. Vitamin composition of freshly harvested and stored potatoes. Journal of Food Science 43: 1566–1570.

    Article  CAS  Google Scholar 

  • Augustin, J., S.R. Johnson, C. Teitzel, R.H. True, J.M. Hogan, R.B. Toma, R.L. Shaw, and R.M. Deutsch. 1978b. Changes in the nutrient composition of potatoes during home preparation: II. Vitamins. American Potato Journal 55: 653–662.

    Article  CAS  Google Scholar 

  • Augustin, J., B.G. Swanson, C. Teitzel, S.R. Johnson, S.F. Pometto, W.E. Artz, C.P. Huang, and C. Schomaker. 1979. Changes in the nutrient composition during commercial processing of frozen potato products. Journal of Food Science 44: 807–809.

    Article  CAS  Google Scholar 

  • Bodner-Montville, J., J.K.C. Ahuja, L.A. Ingwersen, E.S. Haggerty, C.W. Enns, and B.P. Perloff. 2006. USDA food and nutrient database for dietary studies: released on the web. Journal of Food Composition and Analysis 19: S100–S107.

    Article  Google Scholar 

  • Brat, P., S. George, A. Bellamy, L. Du Chaffaut, A. Scalbert, L. Mennen, N. Arnault, and M.J. Amiot. 2006. Daily polyphenol intake in France from fruit and vegetables. Journal of Nutrition 136: 2368–2373.

    PubMed  CAS  Google Scholar 

  • Bui, M.H. 1999. A microbiological assay on microtitre plates of thiamine in biological fluids and foods. International Journal for Vitamin and Nutrition Research 69: 362–366.

    Article  PubMed  CAS  Google Scholar 

  • Butrum, R., and V.R. Young. 1984. Development of a nutrient data system for international use - INFOODS (International Network of Food Data Systems). Journal of the National Cancer Institute 73: 1409–1413.

    PubMed  CAS  Google Scholar 

  • Cumming, R.G., P. Mitchell, and W. Smith. 2000. Diet and cataract: the blue mountains eye study. Ophthalmology 107: 450–6.

    Article  PubMed  CAS  Google Scholar 

  • deCarvalho, M.J.C., J.C. Guilland, D. Moreau, V. Boggio, and F. Fuchs. 1996. Vitamin status of healthy subjects in Burgundy (France). Annals of Nutrition and Metabolism 40: 24–51.

    Article  CAS  Google Scholar 

  • Fardet, A. 2010. New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutrition Research Reviews 23: 65–134.

    Article  PubMed  CAS  Google Scholar 

  • Goyer, A. 2010. Thiamine in plants: aspects of its metabolism and functions. Phytochemistry 71: 1615–1624.

    Article  PubMed  CAS  Google Scholar 

  • Goyer, A., and D.A. Navarre. 2009. Folate is higher in developmentally younger potato tubers. Journal of the Science of Food and Agriculture 89: 579–583.

    Article  CAS  Google Scholar 

  • Harper, C. 2006. Thiamine (vitamin B1) deficiency and associated brain damage is still common throughout the world and prevention is simple and safe! European Journal of Neurology 13: 1078–1082.

    Article  PubMed  CAS  Google Scholar 

  • Huang, H.M., H.L. Chen, and G.E. Gibson. 2010. Thiamine and oxidants interact to modify cellular calcium stores. Neurochemical Research 35: 2107–2116.

    Article  PubMed  CAS  Google Scholar 

  • Jacques, P.F., A. Taylor, S. Moeller, S.E. Hankinson, G. Rogers, W. Tung, J. Ludovico, W.C. Willett, and L.T. Chylack Jr. 2005. Long-term nutrient intake and 5-year change in nuclear lens opacities. Archives of Ophthalmology 123: 517–26.

    Article  PubMed  Google Scholar 

  • Kang, M.S. 1989. A new SAS program for calculating stability-variance parameters. Journal of Heredity. 80: 415–415.

    Google Scholar 

  • Knapp, S.J., W.W. Stroup, and W.M. Ross. 1985. Exact confidence intervals for heritability on a progeny mean basis. Crop Science 25: 192–194.

    Article  Google Scholar 

  • Konings, E.J., H.H. Roomans, E. Dorant, R.A. Goldbohm, W.H. Saris, and P.A. van den Brandt. 2001. Folate intake of the Dutch population according to newly established liquid chromatography data for foods. American Journal of Clinical Nutrition 73: 765–76.

    PubMed  CAS  Google Scholar 

  • Lebiedzinska, A., M.L. Marszall, J. Kuta, and P. Szefer. 2007. Reversed-phase high-performance liquid chromatography method with coulometric electrochemical and ultraviolet detection for the quantification of vitamins B-1 (thiamine), B-6 (pyridoxamine, pyridoxal and pyridoxine) and B-12 in animal and plant foods. Journal of Chromatography A 1173: 71–80.

    Article  PubMed  CAS  Google Scholar 

  • Lonsdale, D. 2006. A review of the biochemistry, metabolism, and clinical benefits of thiamin (e) and its derivatives. Evidence-based Complementary and Alternative Medicine 3: 49–59.

    Article  PubMed  Google Scholar 

  • Love, S.L., and J.J. Pavek. 2008. Positioning the potato as a primary food source of vitamin C. American Journal of Potato Research 85: 277–285.

    Article  CAS  Google Scholar 

  • Lukienko, P.I., N.G. Mel’nichenko, I.V. Zverinskii, and S.V. Zabrodskaya. 2000. Antioxidant properties of thiamine. Bulletin of Experimental Biology and Medicine 130: 874–876.

    PubMed  CAS  Google Scholar 

  • McCabe-Sellers, B.J., C.A. Chenard, D. Lovera, C.M. Champagne, M.L. Bogle, and J. Kaput. 2009. Readiness of food composition databases and food component analysis systems for nutrigenomics. Journal of Food Composition and Analysis 22: S57–S62.

    Article  Google Scholar 

  • Muller, M., and S. Kersten. 2003. Nutrigenomics: goals and strategies. Nature Reviews Genetics 4: 315–322.

    Article  PubMed  Google Scholar 

  • Ndaw, S., M. Bergaentzle, D. Aoude-Werner, and C. Hasselmann. 2000. Extraction procedures for the liquid chromatographic determination of thiamin, riboflavin and vitamin B-6 in foodstuffs. Food Chemistry 71: 129–138.

    Article  CAS  Google Scholar 

  • Nyquist, W.E. 1991. Estimation of heritability and prediction of selection response in plant populations. Critical Reviews in Plant Sciences 10: 235–322.

    Article  Google Scholar 

  • Ollilainen, V., L. Vahteristo, A. Uusi-Rauva, P. Varo, P. Koivistoinen, and J. Huttunen. 1993. The HPLC determination of total Thiamin (Vitamin B1) in foods. Journal of Food Composition and Analysis 6: 152–165.

    Article  CAS  Google Scholar 

  • Pearson, W.N., C.I. Bliss, and P. Gyorgy. 1967. Thiamine. In The vitamins. Vol. VII, ed. P. Gyorgy and W.N. Pearson, 53–98. New York: Academic Press.

    Google Scholar 

  • Planells, E., C. Sanchez, M.A. Montellano, J. Mataix, and J. Llopis. 2003. Vitamins B6 and B12 and folate status in an adult Mediterranean population. European Journal of Clinical Nutrition 57: 777–85.

    Article  PubMed  CAS  Google Scholar 

  • Rabbani, N., S.S. Alam, S. Riaz, J.R. Larkin, M.W. Akhtar, T. Shafi, and P.J. Thornalley. 2009. High-dose thiamine therapy for patients with type 2 diabetes and microalbuminuria: a randomised, double-blind placebo-controlled pilot study. Diabetologia 52: 208–212.

    Article  PubMed  CAS  Google Scholar 

  • Ridley, W.P., R.D. Shillito, I. Coats, H.Y. Steiner, M. Shawgo, A. Phillips, P. Dussold, and L. Kurtyka. 2004. Development of the international life sciences institute crop composition database. Journal of Food Composition and Analysis 17: 423–438.

    Article  CAS  Google Scholar 

  • Rindi, G. 1996. Thiamin. In Present knowledge in nutrition, ed. E.E. Ziegler and L.J. Filer, 160–166. Washington: ILSI Press.

    Google Scholar 

  • Romesburg, H. 1990. Cluster analysis for researchers. Malabar: Robert E. Krieger Publ. Co.

    Google Scholar 

  • Shukla, G.K. 1972. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity 29: 237–245.

    Article  PubMed  CAS  Google Scholar 

  • Sims, A., and D. Shoemaker. 1993. Simultaneous liquid chromatographic determination of thiamine and riboflavin in selected foods. Journal of AOAC International 76: 1156–60.

    PubMed  CAS  Google Scholar 

  • van de Weerdhof, T., M.L. Wiersum, and H. Reissenweber. 1973. Application of liquid chromatography in food analysis. Journal of Chromatography 83: 455–60.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Kortney Sweek for her technical assistance, Dan Hane for helping in planting and managing the potato crop at HAREC, Steve James, Charles Brown, Rich Quick, Stastny Farms (Malin, OR), Jeffrey Smith and Owen Inc (Mapleton, ME), Mangels Seeds Potatoes Inc (Dillon, MT), and Cal-Ore Seed Inc (Klamath Falls, OR) for providing tubers and potato seeds. This research was partly supported by the Potato Commissions of Oregon, Washington, and Idaho.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aymeric Goyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goyer, A., Haynes, K.G. Vitamin B1 Content in Potato: Effect of Genotype, Tuber Enlargement, and Storage, and Estimation of Stability and Broad-Sense Heritability. Am. J. Pot Res 88, 374–385 (2011). https://doi.org/10.1007/s12230-011-9203-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-011-9203-6

Keywords

Navigation