Skip to main content

Advertisement

Log in

Managing Soilborne Disease of Potatoes Using Ecologically Based Approaches

  • Symposium
  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Soil fumigation and planting resistant cultivars remain the primary means for control of soilborne plant diseases. Fumigation however, is being constrained by increased costs, urbanization, and its negative environmental impacts. Resistance genes to soilborne pathogens are not available for many crop species. Using verticillium wilt as model disease we examined the potential of non chemical alternatives, specifically the use of organic amendments and green manures, as disease management tools. Application of organic products reduces disease incidence in controlled settings but its application in commercial use was hampered by inconsistent efficacy. Studies now have demonstrated that by-products of animal and plant production, such as meat and bone meal, feather meal, poultry and swine manure, soy meal, etc. can significantly reduce diseases but that the level of control obtained is product and soil specific. Three mechanisms of action for pathogen reduction were identified: 1) generation of toxic compounds such as ammonia and nitrous acid from high nitrogen-containing materials, 2) presence of volatile fatty acids (e.g. vinegar) and 3) alterations in biological agents that may suppress the activity of plant pathogens. For products that work mostly through the generation of active chemical ingredients, knowing the properties that regulate efficacy allows targeting their use to specific locations and thus, increased activity and consistency. Much less is known about how such materials influence rhizosphere residents involved in regulating plant health. New molecular technologies are being implemented to identify key players in maintaining root health. Through an understanding of the microbial soil ecosystem we should be able to develop disease control strategies that are more economical to growers and are more environmentally benign.

Resumen

La fumigación del suelo y el uso de variedades resistentes permanecen como los primeros medios para controlar las enfermedades vegetales originadas en el suelo. No obstante, la fumigación está siendo limitada por el aumento en los costos, la urbanización, y sus impactos ambientales negativos. Los genes de resistencia a los patógenos del suelo no están disponibles para muchas especies de cultivos. Usando el modelo de enfermedad del marchitamiento por verticillium, examinamos el potencial de alternativas no químicas, específicamente el uso de mejoradores orgánicos y abonos verdes, como herramientas para el manejo de enfermedades. La aplicación de productos orgánicos reduce la incidencia de la enfermedad en condiciones controladas, pero su aplicación en uso comercial se impidió por eficacia inconsistente. Ahora los estudios han demostrado que los sub-productos de la producción vegetal y animal, tales como carne y harina de hueso o de plumas, estiércol de bovinos y cerdos, harina de soya, etc., pueden reducir las enfermedades significativamente, pero el nivel de control obtenido es producto específico del suelo. Se identificaron tres mecanismos de acción para la reducción del patógeno: 1) generación de compuestos tóxicos, tales como amonio y ácido nitroso, de materiales con alto contenido de nitrógeno, 2) presencia de ácidos grasos volátiles (por ejemplo, vinagre) y 3) alteración de agentes biológicos que pudieran suprimir la actividad de los fitopatógenos. Para los productos que trabajan mayormente a través de la generación de ingredientes químicos activos, conociendo las propiedades que regulan la eficacia, permite enfocar su uso a ubicaciones específicas, y así, aumentar la actividad y la consistencia. Se sabe mucho menos acerca de cómo tales materiales influencian a los residentes de la rizosfera involucrados en la regulación de la sanidad de la planta. Se están implementando nuevas tecnologías moleculares para identificar a los jugadores clave en el mantenimiento de la sanidad de la raíz. A través de un entendimiento del ecosistema microbiológico del suelo, estaremos en capacidad de desarrollar estrategias de control de enfermedades que sean más económicas para los productores y más benignas para el ambiente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbasi, P.A., K.L. Conn, and G. Lazarovits. 2004. Suppression of Rhizoctonia and Pythium damping-off of radish and cucumber seedlings by addition of fish emulsion to peat mix or soil. Can J Plant Pathol 26: 177–187.

    Article  Google Scholar 

  • Abbasi, P.A., K.L. Conn, and G. Lazarovits. 2006. Effect of fish emulsion used as a preplanting soil amendment on verticillium wilt, scab, and tuber yield of potato. Can J Plant Pathol 28: 509–518.

    Article  Google Scholar 

  • Abbasi, P.A., K.L. Conn, and G. Lazarovits. 2007. Managing soilborne diseases of vegetable crops with a pre-plant soil or substrate amendment of a corn distillation product. Biocontrol Sci Technol 17: 331–344.

    Article  Google Scholar 

  • Abbasi, P.A., G. Lazarovits, and S. Jabaji-Hare. 2009. Detection of high concentrations of organic acids in fish emulsion and their role in pathogen or disease suppression. Phytopathology 99: 274–281.

    Article  CAS  PubMed  Google Scholar 

  • Azad, H.R., J.R. Davis, W.C. Schnathorst, and C.I. Kado. 1987. Influence of verticillium wilt resistant and susceptible potato genotypes on populations of antagonistic rhizosphere and rhizoplane bacteria and free nitrogen fixers. Appl Microbiol Biotechnol 26: 99–104.

    Article  CAS  Google Scholar 

  • Bailey, K.L., and G. Lazarovits. 2003. Suppressing soil-borne diseases with residue management and organic amendments. Soil Tillage Res 72: 169–180.

    Article  Google Scholar 

  • Berg, G., A. Fritze, N. Roskot, and K. Smalla. 2001. Evaluation of potential biocontrol rhizobacteria from different host plants of Verticillium dahliae Kleb. J Appl Microbiol 91: 963–971.

    Article  CAS  PubMed  Google Scholar 

  • Berg, G., N. Roskot, A. Steidle, L. Eberl, A. Zock, and K. Smalla. 2002. Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different verticillium host plants. Appl Environ Microbiol 68: 3328–3338.

    Article  CAS  PubMed  Google Scholar 

  • Bhat, R.G., and K.V. Subbarao. 2001. Green manure. In Encyclopedia of plant pathology, ed. O.C. Maloy and T.D. Murray, 519–520. New York: Wiley.

    Google Scholar 

  • Blok, W.J., J.G. Lamers, A.J. Termorshuizen, and G.J. Bollen. 2000. Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology 90: 253–259.

    Article  CAS  PubMed  Google Scholar 

  • Brousseau, R., J.E. Hill, G. Préfontaine, S.H. Goh, J. Harel, and S.M. Hemmingsen. 2001. Streptococcus suis serotypes characterized by analysis of chaperonin 60 gene sequences. Appl Environ Microbiol 67: 4828–4833.

    Article  CAS  PubMed  Google Scholar 

  • Browning, M., D.B. Wallace, C. Dawson, S.R. Alm, and J.A. Amador. 2006. Potential of butyric acid for control of soil-borne fungal pathogens and nematodes affecting strawberries. Soil Biol Biochem 38: 401–404.

    CAS  Google Scholar 

  • Chatellier, S., J. Harel, Y. Zhang, M. Gottschalk, R. Higgins, L.A. Devriese, and R. Brousseau. 1998. Phylogenetic diversity of Streptococcus suis strains of various serotypes as revealed by 16S rRNA gene sequence comparison. Int J Syst Bacteriol 48: 581–589.

    CAS  PubMed  Google Scholar 

  • Cohen, M.F., H. Yamasaki, and M. Mazzola. 2005. Brassica napus seed meal soil amendment modifies microbial community structure, nitric oxide production and incidence of Rhizoctonia root rot. Soil Biol Biochem 37: 1215–1227.

    Article  CAS  Google Scholar 

  • Conn, K.L., and G. Lazarovits. 1999. Impact of animal manures on verticillium wilt, potato scab, and soil microbial populations. Can J Plant Pathol 21: 81–92.

    Google Scholar 

  • Conn, K.L., and G. Lazarovits. 2000. Soil factors influencing the efficacy of liquid swine manure added to soil to kill Verticillium dahliae. Canadian Journal of Plant Pathology—Revue Canadienne de Phytopathologie 22: 400–406.

    Google Scholar 

  • Conn, K.L., and G. Lazarovits. 2007. Reduction of potato scab with acidified liquid swine manure soil amendment. Can J Plant Pathol 29: 440.

    Google Scholar 

  • Conn, K.L., M. Tenuta, and G. Lazarovits. 2005. Liquid swine manure can kill verticillium dahliae microsclerotia in soil by volatile fatty acid, nitrous acid, and ammonia toxicity. Phytopathology 95: 28–35.

    Article  PubMed  Google Scholar 

  • Conn, K.L., E. Topp, and G. Lazarovits. 2007. Factors influencing the concentration of volatile fatty acids, ammonia, and other nutrients in stored liquid pig manure. J Environ Qual 36: 440–447.

    Article  CAS  PubMed  Google Scholar 

  • Davis, J.R., O.C. Huisman, D.O. Everson, and A.T. Schneider. 2001. Verticillium wilt of potato: a model of key factors related to disease severity and tuber yield in Southeastern Idaho. Am J Potato Res 78: 291–300.

    Article  Google Scholar 

  • Davis, J.R., O.C. Huisman, D.T. Westermann, S.L. Hafez, D.O. Everson, L.H. Sorensen, and A.T. Schneider. 1996. Effects of green manures on verticillium wilt of potato. Phytopathology 86: 444–453.

    Article  Google Scholar 

  • Davis, J.R., O.C. Huisman, D.T. Westermann, D.O. Everson, A. Schneider, and L.H. Sorensen. 2004. Some unique benefits with sudangrass for improved U.S. #1 yields and size of Russet Burbank potato. Am J Potato Res 81: 403–413.

    Article  Google Scholar 

  • Debode, J., K.D. Maeyer, M. Perneel, J. Pannecoucque, G.D. Backer, and M. Höfte. 2007. Biosurfactants are involved in the biological control of Verticillium microsclerotia by Pseudomonas spp. J Appl Microbiol 103: 1184–1196.

    Article  CAS  PubMed  Google Scholar 

  • El-Tarabily, K.A., A.H. Nassar, G.E.S.J. Hardy, and K. Sivasithamparam. 2003. Fish emulsion as a food base for rhizobacteria promoting growth of radish (Raphanus sativus L. var. sativus) in a sandy soil. Plant Soil 252: 397–411.

    Article  CAS  Google Scholar 

  • Galperin, M.Y. 2006. Sampling of microbial diversity by complete genomes. Environ Microbiol 8: 1313–1317.

    Article  CAS  PubMed  Google Scholar 

  • Gamliel, A., and J.J. Stapleton. 1993. Effect of chicken compost or ammonium phosphate and solarization on pathogen control, rhizosphere microorganisms, and lettuce growth. Plant Dis 77: 886–891.

    Article  CAS  Google Scholar 

  • Goh, S.H., R.R. Facklam, M. Chang, J.E. Hill, G.J. Tyrrell, E.C.M. Burns, D. Chan, C. He, T. Rahim, C. Shaw, and S.M. Hemmingsen. 2000. Identification of Enterococcus species and phenotypically similar Lactococcus and Vagococcus species by reverse checkerboard hybridization to chaperonin 60 gene sequences. J Clin Microbiol 38: 3953–3959.

    CAS  PubMed  Google Scholar 

  • Goicoechea, N. 2009. To what extent are soil amendments useful to control verticillium wilt? Pest Manag Sci 65: 831–839.

    Article  CAS  PubMed  Google Scholar 

  • Hall, N. 2007. Advanced sequencing technologies and their wider impact in microbiology. J Exp Biol 210: 1518–1525.

    Article  CAS  PubMed  Google Scholar 

  • Hemmingsen, S.M., C. Woolford, S.M. Van der Vies, K. Tilly, D.T. Dennis, C.P. Georgopoulos, R.W. Hendrix, and R.J. Ellis. 1988. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333: 330–334.

    Article  CAS  PubMed  Google Scholar 

  • Hill, J.E., R.P. Seipp, M. Betts, L. Hawkins, A.G. Van Kessel, W.L. Crosby, and S.M. Hemmingsen. 2002. Extensive profiling of a complex microbial community by high-throughput sequencing. Appl Environ Microbiol 68: 3055–3066.

    Article  CAS  PubMed  Google Scholar 

  • Hill, J.E., M. Gottschalk, R. Brousseau, J. Harel, S.M. Hemmingsen, and S.H. Goh. 2005a. Biochemical analysis, cpn60 and 16S rDNA sequence data indicate that Streptococcus suis serotypes 32 and 34, isolated from pigs, are Streptococcus orisratti. Vet Microbiol 107: 63–69.

    Article  CAS  PubMed  Google Scholar 

  • Hill, J.E., S.M. Hemmingsen, B.G. Goldade, T.J. Dumonceaux, J. Klassen, R.T. Zijlstra, H.G. Swee, and A.G. Van Kessel. 2005b. Comparison of ileum microflora of pigs fed corn-, wheat-, or barley-based diets by chaperonin-60 sequencing and quantitative PCR. Appl Environ Microbiol 71: 867–875.

    Article  CAS  PubMed  Google Scholar 

  • Hill, J.E., J.R. Town, and S.M. Hemmingsen. 2006. Improved template representation in cpn 60 polymerase chain reaction (PCR) product libraries generated from complex templates by application of a specific mixture of PCR primers. Environ Microbiol 8: 741–746.

    Article  CAS  PubMed  Google Scholar 

  • Kloepper, J.W., M.N. Schroth, and T.D. Miller. 1980. Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology 70: 1078–1082.

    Article  Google Scholar 

  • Koike, S.T., K.V. Subbarao, T.R. Gordon, R.M. Davis, and J.C. Hubbard. 1994. Verticillium wilt of cauliflower in California. Plant Dis 78: 1116–1121.

    Google Scholar 

  • Krechel, A., A. Faupel, J. Hallmann, A. Ulrich, and G. Berg. 2002. Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can J Microbiol 48: 772–786.

    Article  CAS  PubMed  Google Scholar 

  • Lazarovits, G. 2001. Management of soil-borne plant pathogens with organic soil amendments: a disease control strategy salvaged from the past. Can J Plant Pathol 23: 1–7.

    Article  Google Scholar 

  • Lazarovits, G. 2004. Managing soilborne plant diseases through selective soil disinfestation by a knowledge-based application of soil amendments. Phytoparasitica 32: 427–432.

    Article  Google Scholar 

  • Lazarovits, G., K.L. Conn, P.A. Abbasi, and M. Tenuta. 2005. Understanding the mode of action of organic soil amendments provides the way for improved management of soilborne plant pathogens. Acta Hortic 698: 215–224.

    Google Scholar 

  • Lazarovits, G., K.L. Conn, P.A. Abbasi, N. Soltani, W. Kelly, E. McMillan, R.D. Peters, and K.A. Drake. 2008. Reduction of potato tuber diseases with organic soil amendments in two Prince Edward Island fields. Can J Plant Pathol 30: 37–45.

    Article  CAS  Google Scholar 

  • Lazarovits, G., P.A. Abbasi, K. Conn, J.E. Hill, and S.M. Hemmingsen. 2009. Fish emulsion and liquid swine manure: model systems for development of organic amendments as fertilizers with disease suppressive properties. In Biocontrole de doenças de plantas: uso e perspectivas, ed. W. Bettiol and M.A.B. Morandi, 49–68. Jaguariúna: Embapa Meio Ambiente.

    Google Scholar 

  • Lazarovits, G., and K. Subbarao. 2010. Challenges in controlling verticillium wilt by the use of nonchemical methods. In Plant pathology in the 21st Century: Recent developments in management of plant diseases: Contributions to the 9th International Congress for Plant Pathology, held in Turin in 2008, ed. U. Gisi, I. Chet, and L. Gullino, 247–264. Dordrecht: Springer.

    Google Scholar 

  • Lewis, J.A., and G.C. Papavizas. 1970. Evolution of volatile sulfur-containing compounds from decomposition of crucifers in soil. Soil Biol Biochem 2: 239–246.

    Article  CAS  Google Scholar 

  • Lievens, K.H., R. van Rijsbergen, F.R. Leyns, B.J. Lambert, P. Tenning, J. Swings, and H.J.P. Joos. 1989. Dominant rhizosphere bacteria as a source for antifungal agents. Pestic Sci 27: 141–154.

    Article  CAS  Google Scholar 

  • Loper, J.E., C. Haack, and M.N. Schroth. 1985. Population dynamics of soil pseudomonads in the rhizosphere of potato (Solanum tuberosum L.). Appl Environ Microbiol 49: 416–422.

    CAS  PubMed  Google Scholar 

  • Lynch, J.M. 1977. Phytotoxicity of acetic acid produced in the anaerobic decomposition of wheat straw. J Appl Bacteriol 42: 81–87.

    CAS  PubMed  Google Scholar 

  • Lynch, J.M. 1978. Production and phytotoxicity of acetic acid in anaerobic soils containing plant residues. Soil Biol Biochem 10: 131–135.

    Article  CAS  Google Scholar 

  • Mahran, A., K.L. Conn, M. Tenuta, G. Lazarovits, and F. Daayf. 2008a. Effectiveness of liquid hog manure and acidification to kill Pratylenchus spp. in soil. J Nematol 40: 266–275.

    Google Scholar 

  • Mahran, A., M. Tenuta, M.L. Hanson, and F. Daayf. 2008b. Mortality of Pratylenchus penetrans by volatile fatty acids from liquid hog manure. J Nematol 40: 119–126.

    CAS  PubMed  Google Scholar 

  • Mahran, A., M. Tenuta, R.A. Lumactud, and F. Daayf. 2009. Response of a soil nematode community to liquid hog manure and its acidification. Appl Soil Ecol 43: 75–82.

    Article  Google Scholar 

  • Mathre, D.E., R.J. Cook, and N.W. Callan. 1999. From discovery to use: traversing the world of commercializing biocontrol agents for plant disease control. Plant Dis 83: 972–983.

    Article  Google Scholar 

  • Matthiessen, J., and J. Kirkegaard. 2006. Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Crit Rev Plant Sci 25: 235–265.

    Article  CAS  Google Scholar 

  • Mayton, H.S., C. Olivier, S.F. Vaughn, and R. Loria. 1996. Correlation of fungicidal activity of Brassica species with allyl isothiocyanate production in macerated leaf tissue. Phytopathology 86: 267–271.

    Article  CAS  Google Scholar 

  • Mazzola, M. 2004. Assessment and management of soil microbial community structure for disease suppression. Annu Rev Phytopathol 42: 35–59.

    Article  CAS  PubMed  Google Scholar 

  • Mazzola, M., D.M. Granatstein, D.C. Elfving, and K. Mullinix. 2001. Suppression of specific apple root pathogens by Brassica napus seed meal amendment regardless of glucosinolate content. Phytopathology 91: 673–679.

    Article  CAS  PubMed  Google Scholar 

  • Mazzola, M., J. Brown, A.D. Izzo, and M.F. Cohen. 2007. Mechanism of action and efficacy of seed meal-induced pathogen suppression differ in a brassicaceae species and time-dependent manner. Phytopathology 97: 454–460.

    Article  PubMed  Google Scholar 

  • Mehnaz, S., B. Weselowski, and G. Lazarovits. 2007. Sphingobacterium canadense sp. nov., an isolate from corn roots. Syst Appl Microbiol 30: 519–524.

    Article  CAS  PubMed  Google Scholar 

  • Mercado-Blanco, J., D. Rodríguez-Jurado, A. Hervás, and R.M. Jiménez-Diaz. 2004. Suppression of verticillium wilt in olive planting stocks by root-associated fluorescent Pseudomonas spp. Biol Control 30: 474–486.

    Article  Google Scholar 

  • Momma, N. 2008. Biological soil disinfestation (BSD) of soilborne pathogens and its possible mechanisms. Jpn Agr Res Q 42: 7–12.

    CAS  Google Scholar 

  • Müller, H., S. Kurze, I. Richter, and G. Berg. 2004. Strategies in developing an efficient commercial product for biological control of soil borne fungal pathogens by Serratia plymuthica HRO-C48. Bull OILB/SROP 27: 199–201.

    Google Scholar 

  • Ochiai, N., M.L. Powelson, R.P. Dick, and F.J. Crowe. 2007. Effects of green manure type and amendment rate on verticillium wilt severity and yield of Russet Burbank potato. Plant Dis 91: 400–406.

    Article  Google Scholar 

  • Ochiai, N., M.L. Powelson, F.J. Crowe, and R.P. Dick. 2008. Green manure effects on soil quality in relation to suppression of Verticillium wilt of potatoes. Biol Fertil Soils 44: 1013–1023.

    Article  Google Scholar 

  • Oka, Y. 2010. Mechanisms of nematode suppression by organic soil amendments-A review. Appl. Soil Ecol. 44: 101–115.

    Article  Google Scholar 

  • Pieters, A.J. 1927. Green manuring: principles and practice. New York: Wiley.

    Google Scholar 

  • Saibil, H.R., and N.A. Ranson. 2002. The chaperonin folding machine. Trends Biochem Sci 27: 627–632.

    Article  CAS  PubMed  Google Scholar 

  • Schellenberg, J., M.G. Links, J.E. Hill, T.J. Dumonceaux, G.A. Peters, S. Tyler, T.B. Ball, A. Severini, and F.A. Plummer. 2009. Pyrosequencing of the chaperonin-60 universal target as a tool for determining microbial community composition. Appl Environ Microbiol 75: 2889–2898.

    Google Scholar 

  • Scherwinski, K., A. Wolf, and G. Berg. 2007. Assessing the risk of biological control agents on the indigenous microbial communities: Serratia plymuthica HRO-C48 and Streptomyces sp. HRO-71 as model bacteria. Biocontrol 52: 87–112.

    Article  CAS  Google Scholar 

  • Shetty, K.G., K.V. Subbarao, O.C. Huisman, and J.C. Hubbard. 2000. Mechanism of broccoli-mediated verticillium wilt reduction in cauliflower. Phytopathology 90: 305–310.

    Article  CAS  PubMed  Google Scholar 

  • Stockdale, E.A., and P.C. Brookes. 2006. Detection and quantification of the soil microbial biomass—impacts on the management of agricultural soils. J Agric Sci 144: 285–302.

    Article  CAS  Google Scholar 

  • Sturz, A.V., B.R. Christie, and J. Nowak. 2000. Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19: 1–30.

    Article  Google Scholar 

  • Subbarao, K.V., and J.C. Hubbard. 1996. Interactive effects of broccoli residue and temperature on Verticillium dahliae microsclerotia in soil and on wilt in cauliflower. Phytopathology 86: 1303–1310.

    Article  Google Scholar 

  • Subbarao, K.V., J.C. Hubbard, and S.T. Koike. 1999. Evaluation of broccoli residue incorporation into field soil for verticillium wilt control in cauliflower. Plant Dis 83: 124–129.

    Article  Google Scholar 

  • Tenuta, M., and G. Lazarovits. 2002a. Ammonia and nitrous acid from nitrogenous amendments kill the microsclerotia of Verticillium dahliae. Phytopathology 92: 255–264.

    Article  CAS  PubMed  Google Scholar 

  • Tenuta, M., and G. Lazarovits. 2002b. Identification of specific soil properties that affect the accumulation and toxicity of ammonia to Verticillium dahliae. Can J Plant Pathol 24: 219–229.

    Article  CAS  Google Scholar 

  • Tenuta, M., K.L. Conn, and G. Lazarovits. 2002. Volatile fatty acids in liquid swine manure can kill microsclerotia of Verticillium dahliae. Phytopathology 92: 548–552.

    Article  CAS  PubMed  Google Scholar 

  • Tenuta, M., and G. Lazarovits. 2004. Soil properties associated with the variable effectiveness of meat and bone meal to kill microsclerotia of Verticillium dahliae. Appl Soil Ecol 25: 219–236.

    Article  Google Scholar 

  • Thorup-Kristensen, K., J. Magid, and L.S. Jensen. 2001. Catch crops and green manures as biological tools in nitrogen management in temperate zones. Adv Agron 79: 227–302.

    Article  Google Scholar 

  • Trankner, A. 1992. Use of agricultural and municipal organic wastes to develop suppressiveness to plant pathogens. In Biological control of plant diseases, ed. E.C. Tjamos, G.C. Papavizas, and R.J. Cook, 35–42. New York: Plenum.

    Google Scholar 

  • Tsao, P.H., and J.J. Oster. 1981. Relation of ammonia and nitrous acid to suppression of Phytophthora in soils amended with nitrogenous organic substances. Phytopathology 71: 53–59.

    Article  CAS  Google Scholar 

  • Warren, K.S. 1962. Ammonia toxicity and pH. Nature 195: 47–49.

    Article  CAS  PubMed  Google Scholar 

  • Weller, D.M. 2007. Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97: 250–256.

    Article  PubMed  Google Scholar 

  • Wiggins, B.E., and L.L. Kinkel. 2005. Green manures and crop sequences influence potato diseases and pathogen inhibitory activity of indigenous streptomycetes. Phytopathology 95: 178–185.

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm, S. 1951. Effect of various soil amendments on the inoculum potential of the Verticillium wilt fungus. Phytopathology 41: 684–690.

    Google Scholar 

  • Xiao, C.L., K.V. Subbarao, K.F. Schulbach, and S.T. Koike. 1998. Effects of crop rotation and irrigation on Verticillium dahliae microsclerotia in soil and wilt in cauliflower. Phytopathology 88: 1046–1055.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, J., J. Zhu, S. Chen, W. Ruan, and C. Miller. 2007. A novel use of anaerobically digested liquid swine manure to potentially control soybean cyst nematode. J Environ Sci Health, Part B, Pestic Food Contam Agric Wastes 42: 749–757.

    CAS  Google Scholar 

  • Xiao, J., S. Chen, J. Zhu, and W. Ruan. 2008. Effect of liquid swine manure on hatch and viability of heterodera glycines. J Nematol 40: 152–160.

    PubMed  Google Scholar 

Download references

Acknowledgments

I thank the following scientists for their collaboration in some of the research described in the manuscript as unpublished results; Dr. SM Hemmingsen (NRC, Plant Biotech Inst., Saskatoon), Dr. R Ramarathnam, Dr. M. Adesina, Mr. B Reynolds, Dr. KL Conn and Dr. PA Abbasi. The author is grateful for funding provided by Horticulture Australia Ltd and Agriculture and Agrifood Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Lazarovits.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazarovits, G. Managing Soilborne Disease of Potatoes Using Ecologically Based Approaches. Am. J. Pot Res 87, 401–411 (2010). https://doi.org/10.1007/s12230-010-9157-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-010-9157-0

Keywords

Navigation