Skip to main content

Surfactant Impact on Nitrogen Utilization and Leaching in Potatoes

Abstract

Some producers face a unique problem with potato (Solanum tuberosum) production on sandy soils where a dry zone can develop in the potato hill. Surfactants may reduce this dry zone by decreasing water surface tension, thus enhancing water and nutrient uptake. A study was established to determine if band applying nonionic surfactant at 9.35 L ha−1 in the seed furrow at planting would reduce nitrate-nitrogen (NO3-N) leaching and increase potato yield and quality. Nitrogen (N) fertilizer was applied at 34, 168, 236, and 303 kg N ha−1. Porous cup samplers were installed beneath the row at 1-m depth in three treatments, with soil solution samples collected weekly. Nitrate-N concentration and irrigation + rainfall data were used to estimate nitrate leaching. Surfactant application resulted in changes of total NO3-N load between + 6.0 and −46.7% for this 3- year study; however, because of high within-treatment variation for the soil water NO3-N samples, these differences were not statistically significant at the < 0.10 p-value, although a two sample t-test of +/− surfactant treatments across N rates and years resulted in a < 0.01 p-value. Nitrate-N leaching increased with increasing N fertilization rate. Soil NO3-N concentration 20 days after the last N fertilization was significantly less (30.1%) with surfactant application across all years and N rates. Soil NH4-N at this time also tended to be decreased with surfactant application (19.7% reduction, p = 0.12). Total potato yield was not affected by surfactant use, but increased with increasing N rate. Tuber N content increased with surfactant use, resulting in increased crop N uptake.

Resumen

Algunos productores se enfrentan a un problema único con la producción de papa (Solanum tuberosum) en suelos arenosos, donde se puede desarrollar una zona seca en la zona radicular de siembra de papa. Tensioactivos pueden reducir esta zona seca mediante la disminución de la tensión superficial del agua, mejorando así la absorción de agua y nutrientes. Se estableció un estudio para determinar si la aplicación en banda a la siembra de surfactante no iónico 9.35 L ha−1 en el surco de siembra reduciría la lixiviación del nitrato-nitrógeno (NO3-N) y aumentaría el rendimiento y la calidad de la papa. Se aplicó fertilizante nitrógeno (N) a 34, 168, 236, y 303 kg N ha−1. Se instalaron muestreadores de taza porosa debajo de la hilera a 1-m de profundidad en tres tratamientos, con muestras de solución del suelo recogidas cada semana. Datos de concentración de nitrato-N y de riego + precipitación fueron usados para estimar la lixiviación de nitrato. La aplicación del surfactante dio lugar a cambios en la carga total de NO3-N entre + 6,0 y −46,7% para este estudio de tres años; sin embargo, debido a la alta variación dentro de tratamientos para las muestras de agua del suelo NO3-N, estas diferencias no fueron estadísticamente significativas en el valor p < 0.10, a pesar de que una prueba t para dos muestras de los tratamientos surfactante + / − a través de dosis de N y años dio lugar a un p < 0.01. La lixiviación de nitrato-N aumentó con la dosis de fertilización N. La concentración de NO3-N del suelo 20 días después de la última fertilización N fue significativamente menor (30.1%) con la aplicación del surfactante en todos los años y dosis de N. El NH4-N del suelo en ese momento también tendió a ser disminuido con la aplicación del surfactante (19.7% de reducción, p = 0.12). El rendimiento total de papa no fue afectado por el uso del surfactante, pero aumentó con la dosis de N. El contenido de N en el tubérculo aumentó con el uso del surfactante, lo que resultó en el aumento de absorción de N del cultivo.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

USDA-NASS:

United States Department of Agriculture-National Agricultural Statistical Service

WDATCP/WDNR:

Wisconsin Department of Agriculture, Trade and Consumer Protection/ Wisconsin Department of Natural Resources

References

  1. Bundy, L.G. and T.W. Andraski. 2005. Recovery of fertilizer nitrogen in crop residues and cover crops on an irrigated sandy soil. Soil Science Society of America Journal 69: 640–648.

    Article  CAS  Google Scholar 

  2. Cooley, E.T. 2005. Quantifying dry zones in potato hills and the use of surfactant to reduce dry zones and nitrate leaching. MS thesis, Univ of Wisconsin-Madison, Madison, Wisconsin.

  3. Cooley, E. and B. Lowery. 2000. Nitrogen leaching and use of surfactants to reduce the impacts of the potato dry zone. Proceedings of Wisconsin’s Annual Potato Meetings 14: 89–93. Stevens Point, Wisconsin, 14-16 Feb 1998. Univ. of Wisconsin-Extension, Madison, Wisconsin.

    Google Scholar 

  4. Cooley, E.T., B. Lowery, K.A. Kelling, and S. Wilner. 2007. Water dynamics in drip and overhead sprinkler irrigated potato hills and development of dry zones. Hydrological Processes 21: 2390–2399.

    Article  Google Scholar 

  5. Dekker, L.W., C.J. Ritesma, O. Wendroth, N. Jarvis, K. Oostindie, W. Pohl, M. Larsson, and J.P. Gaudet. 1999. Moisture distributions and wetting rates of soils at experimental fields in the Netherlands, France, Sweden and Germany. Journal of Hydrology 215: 4–22.

    Article  Google Scholar 

  6. Fenster, W., G. Randall, W. Nelson, S. Evans, and R. Schoper. 1978. Effect of WEX on nutrient uptake and crop yields, 1976–1977. In Compendium of research reports on the use of nontraditional materials for crop production. NCR-103 Committee on Non-traditional Soil Amendments and Growth Stimulants, E.3.1.1–13. Ames, Iowa: Iowa State Press.

  7. Hart, G.L., B. Lowery, K. McSweeney, and K.J. Fermanich. 1994. In situ characterization of hydrologic properties of Sparta sand: relation to solute movement. Geoderma 64: 41–55.

    Article  Google Scholar 

  8. Karagunduz, A., K.D. Pennell, and M.H. Young. 2001. Influence of a nonionic surfactant on the water retention properties of unsaturated soils. Soil Science Society of America Journal 65: 1392–1399.

    CAS  Google Scholar 

  9. Kelling, K.A., L.G. Bundy, S.M. Combs, and J.B. Peters. 1998a. Soil test recommendations for field, vegetable and fruit crops. UWEX Publ. A2809. Univ. of Wisconsin-Extension, Madison, WI.

  10. Kelling, K.A., S.A. Wilner, R.F. Hensler, and L.M. Massie. 1998b. Placement and irrigation effects on nitrogen fertilizer use efficiency. Proceedings of Wisconsin’s Annual Potato Meetings 11: 79–88. Stevens Point, Wisconsin, 3-4 Feb 1998. Univ. of Wisconsin-Extension, Madison, Wisconsin.

    Google Scholar 

  11. Kelling, K.A., P.E. Speth, F.J. Arriaga, and B. Lowery. 2003. Use of nonionic surfactant to improve nitrogen use efficiency of potato. Hort Acta 619: 225–232.

    CAS  Google Scholar 

  12. Kemper, W.D., J. Olsen, and A. Hodgdon. 1975. Fertilizer salt leaching as affected by surface shaping and placement of fertilizer and irrigation water. Soil Science Society of America Proceedings 39: 115–119.

    Article  Google Scholar 

  13. Instruments, L. 1992a. Nitrate in 2 M KCl soil extracts. Milwaukee, Wisconsin: Lachat Instruments.

    Google Scholar 

  14. Instruments, L. 1992b. Total Kjeldahl nitrogen in soil/plant. Milwaukee, Wisconsin: Lachat Instruments.

    Google Scholar 

  15. Laughlin, W.M., G.R. Smith, and M.A. Peters. 1982. A multipurpose wetting agent, WEX, and a cultured biological product, Agrispon, leave potato yields unchanged. American Potato Journal 59: 87–91.

    Article  CAS  Google Scholar 

  16. Liegel, E.A., C.R. Simson, and E.E. Schulte. 1980. Wisconsin procedures for soil testing, plant analysis and feed and forage analysis. Soil Fertility Series no 6 (Revised). Univ of Wisconsin-Madison, Madison, WI.

  17. Lowery, B. 1981. The potential for wetting agents as soil additives. Proceedings of Fertilizer, Aglime, and Pest Management Conference 20: 86–90. Univ of Wisconsin-Extension, Madison, Wisconsin.

    Google Scholar 

  18. Lowery, B., R.C. Hartwig, D.E. Stoltenberg, K.J. Fermanich, and K. McSweeney. 1998. Groundwater quality and crop-yield responses to tillage management on a Sparta sand. Soil & Tillage Research 48: 225–237.

    Article  Google Scholar 

  19. McCauley, G.N. 1993. Nonionic surfactant and supplemental irrigation of soybean on crusting soils. Agronomy Journal 85: 17–21.

    CAS  Article  Google Scholar 

  20. Pelishek, R.E., J. Osborn, and J. Letey. 1962. The effect of wetting agents on infiltration. Soil Science Society of America Proceedings 26: 595–598.

    Google Scholar 

  21. Robinson, D. 1999. A comparison of soil-water distribution under ridge and bed cultivated potatoes. Agriculture Water Management 42: 189–204.

    Article  Google Scholar 

  22. Saffigna, P.G., C.B. Tanner, and D.R. Keeney. 1976. Non-uniform infiltration under potato canopies caused by interception, stemflow, and hilling. Agronomy Journal 68: 337–342.

    Article  Google Scholar 

  23. Saffigna, P.G., D.R. Keeney, and C.B. Tanner. 1977. Nitrogen, chloride and water balance with irrigated Russet Burbank potatoes in a sandy soil. Agronomy Journal 69: 251–257.

    CAS  Article  Google Scholar 

  24. SAS Institute Inc. 1999. SAS procedures guide, version 8. Cary, NC: SAS Institute Inc.

    Google Scholar 

  25. Starr, G.C., E.T. Cooley, B. Lowery, and K. Kelling. 2005. Soil water fluctuations in a loamy sand under irrigated potato. Soil Science 170: 77–89.

    Article  CAS  Google Scholar 

  26. Stites, W. and G.J. Kraft. 2001. Nitrate and chloride loading to groundwater from an irrigated North-Central US sand-plain vegetable field. Journal of Environmental Quality 30: 1176–1184.

    PubMed  CAS  Google Scholar 

  27. USDA-National Agricultural Statistical Service. (http://www.nass.usda.gov/) accessed 19 Feb 2008.

  28. Watson, C.L., J. Letey, and M.A. Mustafa. 1971. The influence of liquid surface tension and liquid-solid contact angle on liquid entry into porous media. Soil Science 112: 178–183.

    Article  CAS  Google Scholar 

  29. WDATCP/WDNR. 1989. Compilation of private water supply well sampling in the LWRV. Wis Dept of Agric, Trade, and Consumer Protection and Wis Dept of Natural Resources. Madison, Wisconsin (Memo Report).

  30. Wietersen, R.C., T.C. Daniels, K.J. Fermanich, B.D. Girard, K. McSweeney, and B. Lowery. 1993. Atrazine, alachlor, and metolachlor mobility through two sandy Wisconsin soils. Journal of Environmental Quality 22: 811–818.

    CAS  Google Scholar 

  31. Wolkowski, R.P., K.A. Kelling, and E.S. Oplinger. 1985. Evaluation of three wetting agents as soil additives for improving crop yield and nutrient availability. Agronomy Journal 77: 695–698.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Arriaga.

Additional information

Mention of a company or trade name does not imply endorsement by the USDA-Agricultural Research Service or the University of Wisconsin-Madison to the exclusion of others.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arriaga, F.J., Lowery, B. & Kelling, K.A. Surfactant Impact on Nitrogen Utilization and Leaching in Potatoes. Am. J. Pot Res 86, 383–390 (2009). https://doi.org/10.1007/s12230-009-9093-z

Download citation

Keywords

  • Drainage
  • Groundwater
  • N uptake
  • N rate
  • Wetting agent