Skip to main content
Log in

Cretaceous-Paleocene Patagonian Spore and Pollen Clumps: New Findings, Alternative Explanations, and Opened Questions

  • Original Article
  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

There are few studies focused on spore and pollen clumps in paleopalynological samples, and these are only reports from the Northern Hemisphere. These aggregates may be of animal or floral origin. The goal of this contribution is to provide the first detailed study of spore and pollen clumps from the Southern Hemisphere, and to discuss their possible origin, botanical affinities, and pollination modes, based on their morphological characteristics, preservation and comparison with putative living representatives. Three fern spore clumps and 18 angiosperm pollen clumps were recognized in Maastrichtian-Danian La Colonia Formation sediments that outcrop at Chubut Province, Patagonia, Argentina. Most clumps are monospecific and composed of undamaged elements but some of them have two types of spore/pollen with corroded and/or fragmented exines. These findings represent the most diverse and abundant record of fern and angiosperm clumps from the Late Cretaceous and early Paleocene so far known from South America and the Southern Hemisphere. These results are indicative of the need for comprehensive large-scale studies on pollination of modern taxa and careful processing of palynological samples to lessen the already large bias in paleopalynological interpretations. The paucity of information on clumps in the fossil record has impaired our comprehension of dispersion/pollination in deep time.

Resumen

Hay pocos estudios enfocados en agregados de esporas y polen procedentes de muestras palinológicas, y estos han sido reportados únicamente en el Hemisferio Norte. Estos agregados pueden ser de origen animal o floral. El objetivo de esta contribución es proveer el primer estudio detallado de agregados de esporas y polen del Hemisferio Sur, y discutir sus posibles orígenes, afinidades botánicas y modos de polinización, basados en sus características morfológicas, preservación y comparación con posibles análogos modernos. Tres agregados de esporas de helechos y 18 de polen de angiospermas fueron reconocidos en los sedimentos del Maastrichtiano-Daniano de la Formación La Colonia, aflorantes en la Provincia de Chubut, Patagonia, Argentina. La mayoría de los agregados son monoespecíficos y están compuestos por elementos en general bien preservados, aunque algunos tienen dos tipos de esporas/polen con exinas corroídas y/o fragmentadas. Estos hallazgos constituyen el registro más diverso y abundante de agregados esporopolínicos del Cretácico Tardío y Paleoceno temprano de Sudamérica y del Hemisferio Sur. Los resultados de este trabajo indican la necesidad de realizar estudios exhaustivos a gran escala sobre polinización en taxones modernos y de desarrollar nuevas técnicas palinológicas menos destructivas que permitan recuperar los agregados de las paleoasociaciones. Claramente, la escasez de información sobre agregados polínicos en el registro fósil afecta nuestra interpretación acerca de la dispersión/polinización y su evolución en el tiempo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrahamczyk, S., Weigend, M., Becker, K., Dannenberg, L.S., Eberz, J., Atella-Hödtke, N., & Steudel, B. (2022). Influence of plant reproductive systems on the evolution of hummingbird pollination. Ecology and Evolution 12:e8621. https://doi.org/10.1002/ece3.8621

  • Ackerman, J.D. (2000). Abiotic pollen and pollination: ecological, functional, and evolutionary perspectives. In: Dafni, A., Hesse, M., Pacini, E. (Eds.). Pollen and Pollination. Springer, Vienna, p. 167–186. https://doi.org/10.1007/978-3-7091-6306-1_9

  • Arai, M., & Dias-Brito, D. (2018). The Ibaté paleolake in SE Brazil: Record of an exceptional late Santonian palynoflora with multiple significance (chronostratigraphy, paleoecology and paleophytogeography). Cretaceous Research 84: 264–285. https://doi.org/10.1016/j.cretres.2017.11.014

  • Ardolino, A., & Franchi, M. (1996). Descripción Geológica de la Hoja 4366-I Telsen. Provincia del Chubut. Dirección Nacional del Servicio Geológico. Boletín 215. Buenos Aires.

  • Arosa, M.L., Ramos, J.A., Quintanilla, L.G., & Brown, D. (2010). First report of fern (Culcita macrocarpa) spore consumption by a small mammal (Apodemus sylvaticus). Mammalian Biology 75: 115–121. https://doi.org/10.1016/j.mambio.2009.05.009

  • Arosa, M.L., Ramos, J.A., Valkenburg, T., Ceia, R., Laborda, H., Quintanilla, L.G., & Heleno, R. (2009). Fern feeding ecology of the Azores bullfinch (Pyrrhula murina): the selection of fern species and the influence of nutritional composition in fern choice. Ardeola 56: 71–84.

  • Asar, Y., Ho, S.Y., & Sauquet, H. (2022). Early diversifications of angiosperms and their insect pollinators: were they unlinked? Trends in Plant Science 27: 858–869.

  • Baldoni, A.M., & Askin, R.A. (1993). Palynology of the lower Lefipán Formation (Upper Cretaceous) of Barranca de los Perros, Chubut Province, Argentina part Il. Angiosperm pollen and discussion. Palynology 17: 241–264. https://doi.org/10.1080/01916122.1993.9989429

  • Balslev, H. (1996). Juncaceae. Flora Neotropica, Monograph 68, The New York Botanical Garden, New York, 167 p.

  • Balslev, H. (1998). Juncaceae. In: Kubitzki, K. (Eds.). The Families and Genera of Vascular Plants, Springer, Berlin, Vol. 4, p. 252–260.

  • Barfod, A.S., Hagen, M., & Borchsenius, F. (2011). Twenty-five years of progress in understanding pollination mechanisms in palms (Arecaceae). Annals of Botany 108: 1503–1516. https://doi.org/10.1093/aob/mcr192

  • Barnes, R.W., & Rozefelds, A.C. (2000). Comparative morphology of Anodopetalum (Cunoniaceae). Australian Systematic Botany 13: 267–282. https://doi.org/10.1071/SB99006

  • Barrow, S.C., 1998. A monograph of Phoenix L. (Palmae: Coryphoideae). Kew Bulletin 53: 513–575. doi: 10.2307/4110478.

  • Bayer, C., & Kubitzki, K. (2003). Malvaceae. In: Kubitzki, K. (Ed.). The Families and Genera of Vascular Plants, Springer, Berlin, Vol. 5, p. 225–311.

  • Boch, S., Berlinger, M., Prati, D., & Fischer, M. (2016). Is fern endozoochory widespread among fern-eating herbivores? Plant Ecology 217: 13–20. https://doi.org/10.1007/s11258-015-0554-9

  • Bradford, J.C., Hopkins, H.C.F., & Barnes, R.W. (2004). Cunoniaceae. In: Kubitzki, K. (Ed.). The Families and Genera of Vascular Plants, Springer, Berlin, Vol. 6, p. 91–111.

  • Bråthen, K.A., González, V.T., Iversen, M., Killengreen, S., Ravolainen, V.T., Ims, R.A., & Yoccoz, N.G. (2007). Endozoochory varies with ecological scale and context. Ecography 30: 308–320. https://doi.org/10.1111/j.0906-7590.2001.04976.x

  • Brenner, G.J. (1963). The spores and pollen of the Potomac Group of Maryland. Maryland, Waverly Press. Department of Geology, Mines and Water Resources, Bulletin 27: 1-215.

  • Brock, J.M., & Collier, K. (2020). Bat dispersal of fern spores in New Zealand. New Zealand Journal of Ecology 44: 1–3. https://doi.org/10.20417/nzjecol.44.24

  • Bronstein, J.L., Alarcón, R., & Geber, M. (2006). The evolution of plant–insect mutualisms. New Phytologist 172: 412–428. https://doi.org/10.1111/j.1469-8137.2006.01864.x

  • Clyde, W.C., Krause, J.M., De Benedetti, F., Ramezani, J., Cúneo, N.R., Gandolfo, M.A., & Smith, T. (2021). New South American record of the Cretaceous–Paleogene boundary interval (La Colonia Formation, Patagonia, Argentina). Cretaceous Research 126: 104889. https://doi.org/10.1016/j.cretres.2021.104889

  • Collinson, M.E. (1988). Freshwater macrophytes in palaeolimnology. Palaeogeography, Palaeoclimatology, Palaeoecology 62: 317–342. https://doi.org/10.1016/0031-0182(88)90060-0

  • Collinson, M.E., Smith, S.Y., van Konijnenburg-van Cittert, J.H., Batten, D.J., van der Burgh, J., Barke, J., & Marone, F. (2013). New observations and synthesis of Paleogene heterosporous water ferns. International Journal of Plant Sciences 174: 350–363. https://doi.org/10.1086/668249

  • Crawford, M.S., Handley, J., & Tronstad, L.M. (2022). An insect-pollinated species in a wind‐pollinated genus: case study of the endemic plant, Laramie chicken-sage Artemisia simplex. Nordic Journal of Botany 11: e03708. https://doi.org/10.1111/njb.03708

  • Cruden, R.W. (2000). Pollen grains: why so many? In: Dafni, A., Hesse, M., Pacini, E. (Eds.). Pollen and Pollination. Springer, Vienna, p. 143–165.

  • Cruden, R.W., & Jensen, K.G. (1979). Viscin threads, pollination efficiency and low pollen-ovule ratios. American Journal of Botany 66: 875–879. https://doi.org/10.1002/j.1537-2197.1979.tb06295.x

  • Cúneo, N.R., Gandolfo, M.A., Zamaloa, M.C., & Hermsen, E.J. (2014). Late Cretaceous Aquatic Plant World in Patagonia, Argentina. PLOS One 9: e104749. https://doi.org/10.1371/journal.pone.0104749

  • Cúneo, N.R., Hermsen, E.J., & Gandolfo, M.A. (2013). Regnellidium (Salviniales, Marsileaceae) macrofossils and associated spores from the Late Cretaceous of South America. International Journal of Plant Sciences 174: 340–349. https://doi.org/10.1086/668811

  • Davies, T.J., Barraclough, T.G., Chase, M.W., Soltis, P.S., Soltis, D.E., & Savolainen, V. (2004). Darwin’s abominable mystery: insights from a supertree of the angiosperms. Proceedings of the National Academy of Sciences 101: 1904–1909. https://doi.org/10.1073/pnas.0308127100

  • De Benedetti, F., Zamaloa, M.C., Gandolfo, M.A., & Cúneo, N.R. (2018). Heterosporous ferns from Patagonia: the case of Azolla. In: Transformative Paleobotany: Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press, p. 361–373. https://doi.org/10.1016/B978-0-12-813012-4.00015-2

  • De Benedetti, F., Zamaloa, M.C., Gandolfo, M.A., & Cúneo, N.R. (2020). Reinterpretation of Paleoazolla Archangelsky, Phipps, Taylor et Taylor: a heterosporous water fern from the Late Cretaceous of Patagonia Argentina. American Journal of Botany 107: 1–18. https://doi.org/10.1002/ajb2.1501

  • De Benedetti, F., Zamaloa, M.C., Gandolfo, M.A., & Cúneo, N.R. (2021). Water fern spores (Salviniales) from the Late Cretaceous of Patagonia, Argentina. Review of Palaeobotany and Palynology 290: 104428. https://doi.org/10.1016/j.revpalbo.2021.104428

  • Doyle, J.A. (1973). The monocotyledons: their evolution and comparative biology. The Quarterly Review of Biology 48: 399–413.

  • De Benedetti, F., Zamaloa, M.C., Gandolfo, M.A., & Cúneo, N.R. (2023). Pollen from the K–Pg boundary of the La Colonia Formation, Patagonia, Argentina. Review of Palaeobotany and Palynology 316: 104933. https://doi.org/10.1016/j.revpalbo.2023.104933

  • Doyle, J.A., Van Campo, M., & Lugardon, B. (1975). Observations on exine structure of Eucommiidites and Lower Cretaceous angiosperm pollen. Pollen et Spores 17: 429–486.

  • Edlund, A.F., Swanson, R., & Preuss, D. (2004). Pollen and stigma structure and function: the role of diversity in pollination. The Plant Cell 16 (Suppl_1), S84–S97. https://doi.org/10.1105/tpc.015800

  • Faegri, K., & van der Pjil, L. (1979). The Principles of Pollination Ecology. Third Revised Edition. Pergamon Press.

  • Fernández, D.A., Santamarina, P.E., Palazzesi, L., Tellería, M.C., & Barreda, V.D. (2021). Incursion of tropically-distributed plant taxa into high latitudes during the middle Eocene warming event: Evidence from the Río Turbio Fm, Santa Cruz, Argentina. Review of Palaeobotany and Palynology 295: 104510. https://doi.org/10.1016/j.revpalbo.2021.104510

  • Finkelstein, S.A. (2003). Identifying pollen grains of Typha latifolia, Typha angustifolia, and Typha x glauca. Canadian Journal of Botany 81: 985–990. https://doi.org/10.1139/b03-084

  • Freitas, L., Galetto, L., & Sazima, M. (2006). Pollination by hummingbirds and bees in eight syntopic species and a putative hybrid of Ericaceae in Southeastern Brazil. Plant Systematics and Evolution 258: 49–61. https://doi.org/10.1007/s00606-005-0392-7

  • Friis, E.M., Crane, P.R., Pedersen, & K.R. (2019). The Early Cretaceous mesofossil flora of Torres Vedras (NE of Forte da Forca), Portugal: a palaeofloristic analysis of an early angiosperm community. Fossil Imprint 75: 153–257. https://doi.org/10.2478/if-2019-0013

  • Friis, E.M., Pedersen, K.R., & Crane, P.R. (1999). Early angiosperm diversification: the diversity of pollen associated with angiosperm reproductive structures in Early Cretaceous floras from Portugal. Annals of the Missouri Botanical Garden 86: 259–296. https://doi.org/10.2307/2666179

  • Friis, E.M., Pedersen, K.R., & Crane, P.R. (2000). Fossil floral structures of a basal angiosperm with monocolpate, reticulate-acolumellate pollen from the Early Cretaceous of Portugal. Grana 39: 226–239. https://doi.org/10.1080/00173130052017262

  • Friis, E.M., Pedersen, K.R., & Crane, P.R. (2004). Araceae from the Early Cretaceous of Portugal: evidence on the emergence of monocotyledons. Proceedings of the National Academy of Sciences, USA 101: 16565–16570. https://doi.org/10.1073/pnas.0407174101

  • Furness, C.A., Gregory, T., & Rudall, P.J. (2015). Pollen structure and diversity in Liliales. International Journal of Plant Sciences 176: 697–723. https://doi.org/10.1086/682211

  • Gandolfo, M.A., Zamaloa, M.C., Cúneo, N.R., & Archangelsky, A. (2009). Potamogetonaceae fossil fruits from the Tertiary of Patagonia, Argentina. International Journal of Plant Sciences 170: 419–428. https://doi.org/10.1086/595290

  • Germeraad, J.H., Hopping, C.A., & Muller, J. (1968). Palynology of Tertiary sediments from tropical areas. Review of Palaeobotany and palynology 6: 189–348.

  • Guler, M.V., Borel, C.M., Brinkhuis, H., Navarro, E., & Astini, R. (2014). Brackish to freshwater dinoflagellate cyst assemblages from the La Colonia Formation (Paleocene), Northeastern Patagonia, Argentina. Ameghiniana 51: 141–153. https://doi.org/10.5710/AMGH.15.02.2014.949

  • Harder, L.D., & Johnson, S.D. (2008). Function and evolution of aggregated pollen in angiosperms. International Journal of Plant Sciences 169: 59–78. https://doi.org/10.1086/523364

  • Harley, M.M., & Morley, R.J. (1995). Ultrastructural studies of some fossil and extant palm pollen, and the reconstruction of the biogeographical history of subtribes Iguanurinae and Calaminae. Review of Palaeobotany and Palynology 85: 153–182. https://doi.org/10.1016/0034-6667(94)00133-5

  • Harris, W.K. (1972). New form species of pollen from southern Australian early Tertiary sediments. Royal Society of South Australia Transactions 96: 53–65.

  • Hermsen, E.J., Jud, N.A., De Benedetti, F., & Gandolfo, M.A. (2019). Azolla sporophytes and spores from the Late Cretaceous and Paleocene of Patagonia, Argentina. International Journal of Plant Sciences 180: 737–754. https://doi.org/10.1086/704377

  • Hesse, M. (1980). Entwicklungsgeschichte und Ultrastruktur von Pollenkitt und Exine bei nahe verwandten entomophilen und anemophilen Angiospermensippen der Alismataceae, Liliaceae, Juncaceae, Cyperaceae, Poaceae und Araceae. Plant Systematics and Evolution 134: 229–267. https://doi.org/10.1007/BF00986802

  • Hofmann, C.C., & Zetter, R. (2010). Upper Cretaceous sulcate pollen from the Timerdyakh Fomation, Vilui Basin (Siberia). Grana 49: 170–193. https://doi.org/10.1080/00173134.2010.512364

  • Hofmann, C.C., Pancost, R., Ottner, F., Egger, H., Taylor, K., Mohamed, O., & Zetter, R. (2012). Palynology, biomarker assemblages and clay mineralogy of the Early Eocene Climate Optimum (EECO) in the transgressive Krappfeld succession (Eastern Alps, Austria). Austrian Journal of Earth Sciences 105: 224–239.

  • Hopkins, H.C.F., Bradford, J.C., Donovan, B., Pillon, Y., Munzinger, J., & Fogliani, B. (2015). Floral biology of the Cunoniaceae in New Caledonia and the role of insects, birds and geckos as potential pollinators. Kew Bulletin 70: 1–73. https://doi.org/10.1007/s12225-014-9546-5

  • Hopkins, H.C.F., Rozefelds, A.C., and Pillon, Y. (2013). Karrabina gen. nov. (Cunoniaceae), for the Australian species previously placed in Geissois, and a synopsis of genera in the tribe Geissoieae. Australian Systematic Botany 26: 167–185. doi: 10.1071/SB12037.

  • Hu, S., Dilcher, D.L., & Taylor, D.W. (2012). Pollen evidence for the pollination biology of early flowering plants. In: Patiny, S. (Ed.). Evolution of Plant-Pollinator Relationships. Cambridge University Press, p. 165–236.

  • Hu, S., Dilcher, D.L., Jarzen, D.M., & Winship Taylor, D. (2008a). Early steps of angiosperm–pollinator coevolution. Proceedings of the National Academy of Sciences 105: 240–245. https://doi.org/10.1073/pnas.0707989105

  • Hu, S., Jarzen, D.M., & Dilcher, D.L. (2008b). New species of angiosperm pollen from the Dakota Formation (Cenomanian, Upper Cretaceous) of Minnesota, USA. Palynology 32: 17–26. https://doi.org/10.1080/01916122.2008.9989647

  • Huang, S.Q., Xiong, Y.Z., & Barrett, S.C. (2013). Experimental evidence of insect pollination in Juncaceae, a primarily wind-pollinated family. International Journal of Plant Sciences 174: 1219–1228. https://doi.org/10.1086/673247

  • Jaramillo, C.A., & Dilcher, D.L. (2001). Middle Paleogene palynology of Central Colombia, South America: a study of pollen and spores from tropical latitudes. Palaeontographica B. 258: 87–259. https://doi.org/10.1127/palb/258/2001/87

  • Johnson, D.V. (2011). Introduction: date palm biotechnology from theory to practice. In: Jain, S.M., Al-Khayri, J.M., Johnson, D.V. (Eds.). Date Palm Biotechnology. Springer, Dordrecht, p. 1–11.

  • Jud, N.A., Gandolfo, M.A., Iglesias, A., & Wilf, P. (2018). Fossil flowers from the early Palaeocene of Patagonia, Argentina, with affinity to Schizomerieae (Cunoniaceae). Annals of Botany 121: 431–442. https://doi.org/10.1093/aob/mcx173

  • Kauffman, E.G., Upchurch, G.R., & Nichols, D.J. (2005). The Cretaceous-Tertiary boundary interval at South Table Mountain, near Golden, Colorado. In Extinction Events in Earth History: Proceedings of the Project 216: Global Biological Events in Earth History, p. 365–392. Berlin, Heidelberg: Springer Berlin Heidelberg.

  • Kaulfuss, U., Bannister, J.M., Conran, J.G., Kennedy, E.M., Mildenhall, D.C., Lee, D.E. (2023). Review of flowers and inflorescences with in situ pollen from the Miocene Foulden and Hindon Konservat-Lagerstätten, southern New Zealand. Review of Palaeobotany and Palynology 311: 104830. https://doi.org/10.1016/j.revpalbo.2022.104830

  • Knox R.B., & McConchie, C.A. (1986). Structure and functions of compound pollen. In: Blackmore S., Ferguson I.K. (Eds.). Pollen and spores: form and function. Academic Press for the Linnean Society, London, p. 265–282.

  • Labandeira, C.C. (2000). The paleobiology of pollination and its precursors. The Paleontological Society Papers 6: 233–270. https://doi.org/10.1017/S1089332600000784

  • Labandeira, C.C. (2005). Fossil history and evolutionary ecology of Diptera and their associations with plants. In: Yeates, D.K., Wiegmann, B.M. (Eds.). The Evolutionary Biology of Flies. New York, Columbia University Press, p. 217–273.

  • Lee, D.E., Bannister, J.M., Raine, J.I., Conran, J.G. (2010). Euphorbiaceae: Acalyphoideae fossils from early Miocene New Zealand: MallotusMacaranga leaves, fruits, and inflorescence with in situ Nyssapollenites endobalteus pollen. Review of Palaeobotany and Palynology 163: 127–138. https://doi.org/10.1016/j.revpalbo.2010.10.002

  • Lewis, W.H. (1986). Airborne pollen of the neotropics: potential roles in pollination and pollinosis. Grana 25: 75–83. https://doi.org/10.1080/00173138609429936

  • Linder, H.P. (1998). Morphology and the evolution of wind pollination. In: Owens, S.J. and Rudall, P.J. (Eds.). Reproductive Biology Royal Botanic Gardens, p. 123–135.

  • Lobo, J.A., Quesada, M., & Stoner, K.E. (2005). Effects of pollination by bats on the mating system of Ceiba pentandra (Bombacaceae) populations in two tropical life zones in Costa Rica. American Journal of Botany 92: 370–376. https://doi.org/10.3732/ajb.92.2.370

  • Lovas-Kiss, Á., Vizi, B., Vincze, O., Molnár V.A., & Green, A.J. (2018). Endozoochory of aquatic ferns and angiosperms by mallards in Central Europe. Journal of Ecology 106: 1714–1723. https://doi.org/10.1111/1365-2745.12913

  • Lumpkin, T.A., & Plucknett, D.L. (1980). Azolla: botany, physiology, and use as a green manure. Economic Botany 34: 111–153. https://doi.org/10.1007/BF02858627

  • Lupia, R., Herendeen, P.S., & Keller, J.A. (2002). A new fossil flower and associated coprolites: evidence for angiosperm-insect interactions in the Santonian (Late Cretaceous) of Georgia, USA. International Journal of Plant Sciences 163: 675–686. https://doi.org/10.1086/340737

  • Luteyn, J.L. (2002). Diversity, adaptation, and endemism in neotropical Ericaceae: biogeographical patterns in the Vaccinieae. The Botanical Review, 68(1), 55–87

  • Mahabalé, T.S. (1968). Spores and pollen grains of water plants and their dispersal. Review of Paleobotany and Palynology 7: 285–296. https://doi.org/10.1016/0034-6667(68)90034-1

  • Malone, C.R., & Proctor, V.W. (1965). Dispersal of Marsilea mucronata by water birds. American Fern Journal 55: 167–170. https://doi.org/10.2307/1546029

  • Malumián, N., Náñez, C., & Caramés, A. (1991). Unilocular foraminifera of reticular surface from Argentina. Micropaleontology 37: 393–406. https://doi.org/10.2307/1485912

  • Martin, M.D., Chamecki, M., Brush, G.S., Meneveau, C., & Parlange, M.B. (2009). Pollen clumping and wind dispersal in an invasive angiosperm. American Journal of Botany 96: 1703–1711. https://doi.org/10.3732/ajb.0800407

  • Meekijjaroenroj, A., & Anstett, M.C. (2003). A weevil pollinating the Canary Islands date palm: between parasitism and mutualism. Naturwissenschaften 90: 452–455. https://doi.org/10.1007/s00114-003-0454-z

  • Mildenhall, D.C., Kennedy, E.M., Lee, D.E., Kaulfuss, U., Bannister, J.M., Fox, B., & Conran, J.G. (2014). Palynology of the early Miocene Foulden Maar, Otago, New Zealand: Diversity following destruction. Review of Palaeobotany and Palynology 204: 27–42. https://doi.org/10.1016/j.revpalbo.2014.02.003

  • Milne, L.A. (1988). Palynology of a late Eocene lignitic sequence from the western margin of the Eucla Basin, Western Australia. Association of the Australasian Palaeontologists Memoir 5: 285–310.

  • Muller, J., 1981. Fossil pollen records of extant angiosperms. The Botanical Review 47: 1–142. https://doi.org/10.1007/BF02860537

  • Muller, J., de Di Giacomo, E., & Van Erve, A.W. (1987). A palynological zonation for the Cretaceous, Tertiary and Quaternary of northern South America. American Association of Stratigraphic Palynologists, Contributions Series 19: 7–76.

  • Nagalingum, N.S., Schneider, H., & Pryer, K.M. (2006). Comparative morphology of reproductive structures in heterosporous water ferns and a reevaluation of the sporocarp. International Journal of Plant Science 167: 805–815. https://doi.org/10.1086/503848

  • Náñez, C., & Malumián, N. (2008). Paleobiogeografía y paleogeografía del Maastrichtiense marino de la Patagonia, Tierra del Fuego y la Plataforma Continental Argentina, según sus foraminíferos bentónicos. Revista Española de Paleontología 23: 273–300. https://doi.org/10.7203/sjp.23.2.20412

  • Pacini, E. (2000). From anther and pollen ripening to pollen presentation. In: Dafni, A., Hesse, M., Pacini, E. (Eds.). Pollen and Pollination. Springer, Vienna, p. 19–43.

  • Pacini, E., & Franchi, G.G. (1996). Some cytological, ecological and evolutionary aspects of pollination. Acta Societatis Botanicorum Poloniae 65: 11–16. https://doi.org/10.5586/asbp.1996.002

  • Page, R., Ardolino, A., de Barrio, R.E., Franchi, M., Lizuain, A., Page, S., & Silva Nieto, D. (1999). Estratigrafía del Jurásico y Cretácico del Macizo de Somún Curá, provincias de Río Negro y Chubut. In: Caminos R. (Ed.), Geología Regional Argentina, Servicio Geológico Minero Argentino. Instituto de Geología y Recursos Minerales, Buenos Aires. Anales 29: 460–488.

  • Poppinga, S., Haushahn, T., Warnke, M., Masselter, T., & Speck, T. (2015). Sporangium exposure and spore release in the Peruvian maidenhair fern (Adiantum peruvianum, Pteridaceae). PLoS One, 10(10), e0138495

  • Palynodata Inc, & White, J.M. (2006). Palynodata Datafile: 2006 version, with Introduction by J.M. White. Geological Survey of Canada Open File 5793, 1 CD-ROM.

  • Passarini Lopes, F., Oriani, A., and Coan, A.I. (2021). Development of the permanent tetrad wall in Juncus L. (Juncaceae, Poales). Protoplasma 258: 495–506. https://doi.org/10.1007/s00709-020-01583-0

  • Perez Loinaze, V.P., Giordano, S.R., & Limarino, C.O. (2021). Late Cretaceous palynomorphs from the Golfo San Jorge Basin, Argentina. Journal of South American Earth Sciences 107: 103151. https://doi.org/10.1016/j.jsames.2020.103151

  • Punt, W., Hoen, P.P., Blackmore, S., Nilsson, S., & Le Thomas, A. (2007). Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology 143: 1–81. https://doi.org/10.1016/j.revpalbo.2006.06.008

  • Raju, A.J., Rao, S.P., & Rangaiah, K. (2005). Pollination by bats and birds in the obligate outcrosser Bombax ceiba L. (Bombacaceae), a tropical dry season flowering tree species in the Eastern Ghats forests of India. Ornithological Science 4: 81–87. https://doi.org/10.2326/osj.4.81

  • Robbins, E.L., Cuomo, M.C., Heberyan, K.A., Mudie, P.J., Chen, Y.-Y., & Head, E. (1996). In: Jansonius, J., McGregor, D.C. (Eds.). Palynology: principles and applications (Vol. 1). American Association of Stratigraphic Palynologists Foundation 3: 1085–1097.

  • Roulston, T.H., & Cane, J.H. (2000). Pollen nutritional content and digestibility for animals. Plant Systematic and Evolution 222: 187–209. https://doi.org/10.1007/BF00984102

  • Schönenberger, J., Friis, E.M., Matthews, M.L., & Endress, P.K. (2001). Cunoniaceae in the Cretaceous of Europe: evidence from fossil flowers. Annals of Botany 88: 423–437. https://doi.org/10.1006/anbo.2001.1488

  • Shih, J.G., & Finkelstein, S.A. (2008). Range dynamics and invasive tendencies in Typha latifolia and Typha angustifolia in eastern North America derived from herbarium and pollen records. Wetlands 28: 1–16. https://doi.org/10.1672/07-40.1

  • Smith, S.Y., Collinson, M.E., Rudall, P.J., & Simpson, D.A. (2010). The Cretaceous and Paleogene fossil record of Poales: review and current research. In: Seberg, O., Petersen, G., Barfod, A.S., & Davis, J.I. (Eds.), Diversity, phylogeny, and evolution in the Monocotyledons. Proceedings of the Fourth International Conference on the Comparative Biology of the Monocotyledons and the Fifth International Symposium on Grass Systematics and Evolution. Aarhus: Aarhus University Press, p. 333–356.

  • Smith-Ramírez, C., Martinez, P., Nunez, M., González, C., & Armesto, J.J. (2005). Diversity, flower visitation frequency and generalism of pollinators in temperate rain forests of Chiloé Island, Chile. Botanical Journal of the Linnean Society 147: 399–416. https://doi.org/10.1111/j.1095-8339.2005.00388.x

  • Sork, V.L., & Smouse, P.E. (2006). Genetic analysis of landscape connectivity in tree populations. Landscape Ecology, 21, 821–836. https://doi.org/10.1007/s10980-005-5415-9

  • Tamura, M.N. (1998). Liliaceae. In: Kubitzki, K. (Ed.), The Families and Genera of Vascular Plants, Springer, Berlin, Vol. 3, p. 343–353.

  • Taylor, W.D., & Hu, S. (2010). Coevolution of early angiosperms and their pollinators: Evidence from pollen. Palaeontographica B. 283: 103–135. https://doi.org/10.1127/palb/283/2010/103

  • Thiele-Pfeiffer, H. (1980). Die Miozäne mikroflora aus dem Braunkohlentagebau oder bei Wackersdorf/Oberpfalz. Palaeontographica B. 174: 95–224.

  • Thiergart, F. (1937). Die Pollenflora der Niederlausitzer Braunkohle, besonders im Profil der Grube Marga bei Senftenberg. Jahrb. Preuss. Geologischen Landesanstalt 58: 282–356.

  • Timerman, D., Greene, D.F., Ackerman, J.D., Kevan, P.G., & Nardone, E. (2014). Pollen aggregation in relation to pollination vector. International Journal of Plant Sciences 175: 681–687. https://doi.org/10.1086/676301

  • Traverse, A. (2007). Paleopalynology. Second Edition. In: Landman, N.H., Douglas, S.J. (Eds.). Springer Science & Business Media, 813 p.

  • Tryon, R. (1986). The biogeography of species, with special reference to ferns. The Botanical Review 52: 117–156. https://doi.org/10.1007/BF02860999

  • Tryon, R.M., & Tryon, A.F. (1982). Ferns and Allied Plants with Special Reference to Tropical America, Vol. 4. Springer, New York, p. 857.

  • Tsou, C.H., & Fu, Y.L. (2007). Octad pollen formation in Cymbopetalum (Annonaceae): the binding mechanism. Plant Systematics and Evolution 263: 13–23. https://doi.org/10.1007/s00606-006-0471-4

  • Vallati, P., Casal, G., Foix, N., Allard, J., De Sosa Tomas, A., & Calo, M. (2016). First report of a Maastrichtian palynoflora from the Golfo San Jorge Basin, central Patagonia, Argentina. Ameghiniana 53: 495–505. https://doi.org/10.5710/AMGH.28.12.2015.2948

  • Volkova, O.A., Remizowa, M.V., Sokoloff, D.D., & Severova, E.E. (2016). A developmental study of pollen dyads and notes on floral development in Scheuchzeria (Alismatales: Scheuchzeriaceae). Botanical Journal of the Linnean Society 182: 791–810. https://doi.org/10.1111/boj.12482

  • Wagner, G.M. (1997). Azolla: A review of its biology and utilization. The Botanical Review 63: 1–26. https://doi.org/10.1007/BF02857915

  • Whitehead, D.R. (1969). Wind pollination in the angiosperms: evolutionary and environmental considerations. Evolution 23: 28–35. https://doi.org/10.2307/2406479

  • Wodehouse, R.P. (1933). Tertiary pollen-II The oil shales of the Eocene Green River formation. Bulletin of the Torrey Botanical Club 60: 479–524. https://doi.org/10.2307/2480586

  • Zamaloa, M.C., & Andreis, R.R. (1995). Asociación palinológica del Paleoceno temprano (Formación Salamanca) en Ea. Laguna Manantiales, Santa Cruz, Argentina. 4° Congreso Argentino Paleontología y Bioestratigrafía. Trelew, Chubut, Argentina, 6: 301–305.

  • Zhou, B., Tu, T., Kong, F., Wen, J., & Xu, X. (2018). Revised phylogeny and historical biogeography of the cosmopolitan aquatic plant genus Typha (Typhaceae). Scientific Reports 8: 8813. https://doi.org/10.1038/s41598-018-27279-3

Download references

Acknowledgements

We thank P. Puerta, A. Iglesias, M. Krause, and E. Hermsen for assistance during the 2010 field work season when the bulk of the samples were collected, and E. Ruigomez for curatorial work at the MEF. This work was supported by CONICET, the National Science Foundation grants DEB-0919071, DEB-0918932, DEB-1556666, DEB-1556136, EAR-1925755, and EAR-1925481 to M.A. Gandolfo and P. Wilf, and an International Association for Plant Taxonomy (IAPT) grant to F. De Benedetti.

Author information

Authors and Affiliations

Authors

Contributions

F.D.B. provided funding for the project, participated in the field trips where the fossils were collected, described the material, assembled the plates, and led the discussion and writing of the manuscript. M.C.Z. described the material and led and participated in the discussion and writing of the manuscript. M.A.G. provided funding for the project, led and participated in the field trips where the fossils were collected, and participated in writing the manuscript. All authors gave comments, suggestions, and corrections or wrote sections of the manuscript drafts.

Corresponding author

Correspondence to Facundo De Benedetti.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Benedetti, F., Zamaloa, M.C. & Gandolfo, M.A. Cretaceous-Paleocene Patagonian Spore and Pollen Clumps: New Findings, Alternative Explanations, and Opened Questions. Bot. Rev. 90, 1–32 (2024). https://doi.org/10.1007/s12229-023-09297-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-023-09297-7

Keywords

Palabras clave

Navigation