Skip to main content
Log in

Reproductive Biology of Asteraceae on Oceanic Islands

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Asteraceae are among the most abundant angiosperm families on oceanic islands. The reproductive biology of Asteraceae is reviewed and the attributes of the family contributing to their success on islands are discussed. Asteraceae are effective dispersers (the small, single-seeded fruits are moved great distances by wind and birds), and colonization is most likely limited by establishment. The pollinators of the colonizing ancestors rarely disperse with them to islands. Divorced from the pollinators of their ancestral habitats, the capitulum of aggregated small, shallow flowers typical of Asteraceae facilitates pollination of colonizers by various novel biotic visitors and by wind. Self-compatible (SC) colonizing ancestors are common, permitting establishment of sexual populations from one or few propagules. However, several large insular lineages of Asteraceae originated from functionally self-incompatible (SI) colonizers that may have also possessed the capacity to set some self-seed. Establishment may also be facilitated by dominance relationships among S-alleles in the sporophytic SI (SSI) system of Asteraceae, increasing cross-compatibility within small populations. Factors potentially promoting outcrossing in SC Asteraceae are: gynomonoecy, with temporal separation of receptive pistillate ray florets and pollen presentation in the hermaphroditic disc florets of a capitulum (interfloral protogyny); and intrafloral protandry where pollen presentation occurs before stigmata become receptive. Dioecy, gynodioecy, and monoecy are infrequent sexual systems in insular Asteraceae. Multiple paternity is similar in island composites to other Asteraceae, suggesting that neither compatible mates nor pollinators are typically limiting. Additional studies, particularly with genomic markers, are needed for more refined insights into mating systems and paternity in island Asteraceae as these results have important conservation implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbott, R. J. & J. A. Irwin. 1988. Pollinator movements and the polymorphism for outcrossing rate at the ray floret locus in groundsel, Senecio vulgaris L. Heredity 60: 295–298.

    Article  Google Scholar 

  • Abe, T. 2006. Threatened pollination systems in native flora of the Ogasawara (Bonin) Islands. Annals of Botany 98: 317–334. doi:https://doi.org/10.1093/aob/mcl117

    Article  PubMed  PubMed Central  Google Scholar 

  • Alarcón, R. 2010. Congruence between visitation and pollen-transport networks in a California plant-pollinator community. Oikos 119: 35–44. doi: https://doi.org/10.1111/j.1600-0706.2009.17694.x,

    Article  ADS  Google Scholar 

  • Anderson, G. J., G. Bernardello, T. F Stuessy & D. J. Crawford. 2001. Breeding system and pollination of selected plants endemic to Juan Fernández Islands. American Journal of Botany 88: 220–233.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, G. J. & G. Bernardello. 2018. Reproductive biology. Pp. 193–2005, In: Stuessy, T. F., D. J. Crawford, P. López-Sepúlveda, C. M. Baeza & E. Ruiz, (eds.), Plants of oceanic islands: evolution, biogeography, and conservation of the flora of the Juan Fernández (Robinson Crusoe) Archipelago. Cambridge University Press, Cambridge.

    Google Scholar 

  • Anderson, G. J., G. Bernardello, M. R. Opel & M. Anderson. 2006. Reproductive biology of the dioecious Canary Islands endemic Withania aristata (Solanaceae). American Journal of Botany 93: 1295–1305. DOI:https://doi.org/10.3732/ajb.93.9.1295

    Article  PubMed  Google Scholar 

  • Anderson, G. J., J. Perez de Paz , M. Anderson, G. Bernardello & D. W.Taylor. 2021. A leaky dimorphic sexual system and breeding system characterize a successful island colonist: the reproductive biology of Plocama pendula (Rubiaceae). Botanical Journal of the Linnean Society 196: 540–555. https://doi.org/10.1093/botlinnean/boab026

    Article  Google Scholar 

  • Anderson, M. C. 1992. An analysis of variability in seed settling velocities of several wind-dispersed Asteraceae. American Journal of Botany 79: 1087–1091.

    Google Scholar 

  • Andrus, N., J. Trusty, A. Santos-Guerra, R. K. Jansen & J. Francisco-Ortega. 2004. Using molecular phylogenies to test phytogeographical links between East/South Africa-Southern Arabia and the Macaronesian Islands: A review, and the case of Vierea and Pulicaria Section Vieraeopsis (Asteraceae). Taxon 53: 333–346.

  • Andrus, N., A. Tye, G. Nesom, D. Bogler, C. Lewis, R. Noyes, P. Jaramillo & J. Francisco-Ortega. 2009. Phylogenetics of Darwiniothamnus (Asteraceae: Astereae) – molecular evidence. Journal of Biogeography 36: 1055–1069.

    Article  Google Scholar 

  • Aslan, C. E., A. B. Shiels, W. Haines & C. T. Liang. 2019. Non-native insects dominate daytime pollination in a high-elevation Hawaiian dryland ecosystem. American Journal of Botany 106: 313–324. https://doi.org/10.1002/ajb2.1233

    Article  PubMed  Google Scholar 

  • Bainbridge, S. J. & B. G. Baldwin. 2010. Self-incompatibility, pollen limitation, and endangerment in the Hawaiian silversword alliance (Compositae) on Kaua’i. Botany Conference, Providence, RI.

  • Baker, H. G. 1955. Self compatibility and establishment after ‘long distance’ dispersal. Evolution 9: 347–349.

    Google Scholar 

  • Baker, H. G. 1967. Support for Baker’s Law: as a rule. Evolution 2: 853 –856.

    Article  Google Scholar 

  • Balao, F., R. Casimiro-Soriguer, L. García-Castaño, A. Terrab & S. Talavera. 2015. Big thistle eats the little thistle: does unidirectional introgressive hybridization endanger the conservation of Onopordum hinojense? New Phytologist 206: 448–458 doi: https://doi.org/10.1111/nph.13156

    Article  CAS  PubMed  Google Scholar 

  • Balao, F., L. Navarro-Sampedro, R. Berjano, J. L. García-Castaño, R. Casimiro-Soriguer, M. Talavera, S. Talavera & A. Terrab. 2017. Riverine speciation and long dispersal colonization in the Ibero-African Onopordum dissectum complex (Asteraceae). Botanical Journal of the Linnean Society 183: 600–615.

    Article  Google Scholar 

  • Baldwin, B. G. & W. L. Wagner. 2010. Hawaiian angiosperm radiations of North American origin. Annals of Botany 105: 849–879. https://doi.org/10.1093/aob/mcq052

    Article  PubMed  PubMed Central  Google Scholar 

  • Bañares, Á., G. Blanca., J. Güemes, J. C. Moreno & S. Ortiz., (eds.) 2004. Atlas y Libro Rojo de la Flora Vascular Amenazada de España.Dirección General de Conservación de la Naturaleza. Madrid, 1.069

  • Barrett SCH. 2003. Mating strategies in flowering plants: the outcrossing-selfing paradigm and beyond. Philosophical Transactions of the Royal Society of London. Series B. 358 :991–1004. doi: https://doi.org/10.1098/rstb.2003.1301

    Article  Google Scholar 

  • Barrett, S. C. H. 2013. The evolution of plant reproductive systems: How often are transitions irreversible? Proceedings of the Royal Society B-Biological Sciences 280, 20130913. https://doi.org/10.1098/rspb.2013.0913

    Article  PubMed Central  Google Scholar 

  • Barrett, S. C. H. & D. Crowson. 2016. Mating systems in flowering plants. Encyclopedia of Evolutionary Biology vol. 2: 473–479. DOI: https://doi.org/10.1016/B978-0-12-800049-6.00161-X

    Article  Google Scholar 

  • Bellanger, S., J.-P. Guillemin & H. Darmency. 2014. Pseudo-self-compatibility in Centaurea cyanus L. Flora 209: 325–331. DOI: https://doi.org/10.1016/j.flora.2014.04.002

    Article  Google Scholar 

  • Bernardello, G., G. J. Anderson, T. F. Stuessy & D. J. Crawford. 2001. A survey of floral traits, breeding systems, floral visitors, and pollination systems of the angiosperms of the Juan Fernandez Islands (Chile). Botanical Review (Lancaster) 67: 255–308.

    Article  Google Scholar 

  • Bernardello, G., G. J.Anderson, T. F. Stuessy & D. J. Crawford. 2006. The angiosperm flora of the archipelago Juan Fernandez (Chile): origin and dispersal. Canadian Journal of Botany 84: 1266–1281. https://doi.org/10.1139/b06-092

    Article  Google Scholar 

  • Bertin, R. I. 1993. Incidence of monoecy and dichogamy in relation to self-fertilization in angiosperms. American Journal of Botany 80: 557–560. https://doi.org/10.2307/2445372

    Article  PubMed  Google Scholar 

  • Bertin, R. I. & C. M. Newman. 1993. Dichogamy in angiosperms. Botanical Review (Lancaster) 59: 112–152.

    Article  Google Scholar 

  • Blöch C, H. Weiss-Schneeweiss, G. M. Schneeweiss, M. H, J. Barfuss, C. A. Rebernig, J. L. Villaseñor & T. F. Stuessy 2009. Molecular phylogenetic analyses of nuclear and plastid DNA sequences support dysploid and polyploid chromosome number changes and reticulate evolution in the diversification of Melampodium (Millerieae, Asteraceae). Molecular Phylogenetics and Evolution 53: 220–233. https://doi.org/10.1016/j.ympev.2009.02.021

  • Borgen, L. 1976. Analysis of a hybrid swarm between Argyranthemum adauctum and A. filifolium in the Canary Islands. Norwegian Journal of Botany 23: 121–137.

    Google Scholar 

  • Borgen, L. 1984. Biosystematics of Macaronesian flowering plants. Pp. 477–496. In: W. F. Grant, (ed.), Plant biosystematics. Academic Press, Orlando.

    Chapter  Google Scholar 

  • Bramwell, D. & Z. Bramwell. 2001. Wildflowers of the Canary Islands, 2nd edn. Editorial Ruida, Madrid.

    Google Scholar 

  • Bremer, K. 1994. Asteraceae: Cladistics and classification. Timber Press, Portland, OR.

    Google Scholar 

  • Brennan, A. C., D. A. Tabah, S. A. Harris & S. J. Hiscock. 2011. Sporophytic self-incompatibility in Senecio squalidus (Asteraceae): S allele dominance interactions and modifiers of cross-compatibility and selfing rates. Heredity 106: 113–123. https://doi.org/10.1038/hdy.2010.29

    Article  CAS  PubMed  Google Scholar 

  • Brennan, A. C., S. A. Harris & S. J. Hiscock. 2006. The population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae): the number, frequency, and dominance interactions of S alleles across its British range. Evolution 60: 213–224. https://doi.org/10.1554/05-231.1

    Article  CAS  PubMed  Google Scholar 

  • Brennan, A. C., S. A. Harris & S. J. Hiscock. 2013. The population genetics of sporophytic self-incompatibility in three hybridizing Senecio (Asteraceae) species with contrasting population histories. Evolution 67: 1347–1367.

    PubMed  Google Scholar 

  • Brennan, A. C., S. A. Harris, D. A.Taba & S. J. Hiscock. 2002. The population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae). I. S allele diversity in a natural population. Heredity 89: 430–438.

    Article  CAS  PubMed  Google Scholar 

  • Brennan, A. C., S. A. Harris & S. J. Hiscock. 2005. Modes and rates of selfing and associated inbreeding depression in the self-incompatible plant Senecio squalidus (Asteraceae): a successful colonizing species in the British Isles. New Phytologist 168: 475–486. doi: https://doi.org/10.1111/j.1469-8137.2005.01517.x

    Article  PubMed  Google Scholar 

  • Brochmann C. 1987. Evaluation of some methods for hybrid analysis, exemplified by hybridisation in Argyranthemum. Nordic Journal of Botany 7:609–630.

    Article  Google Scholar 

  • Brochmann, C., O. H. Rustan, W. Lobin & N. Kilian. 1997. The endemic vascular plants of the Cape Verde Islands, W Africa. Sommerfeltia 24: 1–356. Oslo. ISBN 82-7420-033-0. ISSN 0800- 6865.

  • Bruneau, A. & G. J. Anderson. 1994. To bee or not to bee?: The pollination biology of Apios americana. Plant Systematics and Evolution 192: 147–149. https://www.jstor.org/stable/23674611

  • Brunet J. & H. R. Sweet. 2006. Impact of insect pollinator group and floral display size on outcrossing rate. Evolution 60: 234–246. https://doi.org/10.1111/j.0014-3820.2006.tb01102.x

    Article  PubMed  Google Scholar 

  • Brys, R., A. Vanden Broeck, J. Mergeay & H. Jacquemyn. 2013. The contribution of mating system variation to reproductive isolation in two closely related Centaurium species (Gentianaceae) with a generalized flower morphology. Evolution 68:1281–1293. https://doi.org/10.1111/evo.12345

    Article  Google Scholar 

  • Burtt, B. L. 1961. Compositae and the study of functional evolution. Transactions of the Botanical Society of Edinburgh 39: 216–232. DOI: https://doi.org/10.1080/13594866109441703

    Article  Google Scholar 

  • Burtt, B. L. 1977. Aspects of diversification in the capitulum. Pp. 41–59 In: Heywood, V. H., J. B. Harborne & B. L. Turner, (eds.), The biology and chemistry of the Compositae. Academic Press, New York.

    Google Scholar 

  • Byers, D. L. & T. R. Meagher. 1992. Mate availability in small populations of plant species with homomorphic sporophytic self-incompatibility. Heredity 68: 353–359.

    Article  Google Scholar 

  • Calleja, J. A., N. Garcia-Jacas, C. Roquet & A. Susanna. 2016. Beyond the Rand Flora: phylogeny and biogeographical history of Volutaria (Compositae). TAXON 65: 315-332.

    Article  Google Scholar 

  • Cantley, J. T., D. Frohich & C. T. Martine. 2016. Multiple records of monoecy and leakiness in dioecious taxa of Coprosma spp. (Rubiaceae). Records of the Hawaii Biological Survey for 2015. N. L. Evenhuis, (ed.), Bishop Museum Occasional Papers 118: 9–12

  • Carlquist, S. 1966a. The biota of long-distance dispersal. II. Loss of dispersibility in Pacific Compositae. Evolution 20: 30–48.

    Article  PubMed  Google Scholar 

  • Carlquist, S. 1966b. The biota of long-distance dispersal. I. Principles of dispersal and evolution. The Quarterly Review of Biology 41: 247–270.

    Article  CAS  PubMed  Google Scholar 

  • Carlquist, S. 1966c. The biota of long-distance dispersal. IV. Genetic systems in the floras of oceanic islands. Evolution 20: 433–455.

    Article  PubMed  Google Scholar 

  • https://esadocs.defenders-cci.org/ESAdocs/five_year_review/doc2472.pdf (accessed September 19, 2023)

  • Carlquist, S. 1974. Island biology. Columbia University Press, New York & London.

  • Carr, G. D. 1985. Monograph of the Hawaiian Madiinae (Asteraceae): Argyroxiphium, Dubautia, and Wilkesia. Allertonia 4: 1–123.

    Google Scholar 

  • Carr, G. D., E. A. Powell & D. W. Kyhos. 1986. Self-incompatibility in the Hawaiian Madiinae (Compositae): an exception to Baker’s rule. Evolution 40: 430–434.

    PubMed  Google Scholar 

  • Carvajal-Endara, S., A. P. Hendry, N. C. Emery & T. J. Davies. 2017. Habitat filtering not dispersal limitation shapes oceanic island floras: species assembly of the Galápagos archipelago. Ecology Letters 20: 495–504. https://doi.org/10.1111/ele.12753

    Article  PubMed  Google Scholar 

  • Caujapé-Castells, J., J. Naranjo-Súarez, I. Santana, M. Baccarani-Rosas, N. Cabrera-García, M. Marrero, E. Carqué & R. Mesa. 2008a. Population genetic suggestions to offset the extinction ratchet in the endangered Canarian endemic Atractylis preauxiana (Asteraceae). Plant Systematics and Evolution 273: 191–199.

    Article  Google Scholar 

  • Caujapé-Castells, J., Á. Marrero-Rodríguez, M. Baccarani-Rosas, N. Cabrera-García & B. Vilches-Navarrete. 2008b. Population genetics of the endangered Canarian endemic Atractylis arbuscula (Asteraceae): implications for taxonomy and conservation. Plant Systematics and Evolution 274: 99–109.

    Article  Google Scholar 

  • Caujapé-Castells, J., A. Tye, D. J. Crawford, A. Santos-Guerra, A. Sakai, K. Beaver, W. Lobin, F. B. Vincent Florens, M. Moura, R. Jardim, I. Gómes & C. Kueffer. 2010. Conservation of oceanic island floras: present and future global challenges. Perspective in Plant Ecology, Evolution and Systematics. 21:107-129.

    Article  Google Scholar 

  • Cerbah M, T. Souza-Chies, M. F. Jubier, B. Lejeune & S. Siljak-Yakovlev. 1998. Molecular phylogeny of the genus Hypochaeris using internal transcribed spacers of nuclear rDNA: inference for chromosomal evolution. Molecular Biology and Evolution 15: 345 – 354.

    Article  CAS  PubMed  Google Scholar 

  • Chamorro, S., R. Heleno , J. M. Olesen, C. K. McMullen & A. Taveset. 2012. Pollination patterns and plant breeding systems in the Galápagos: a review. Annals of Botany (Oxford) 110:1489–1501. doi:https://doi.org/10.1093/aob/mcs132

    Article  Google Scholar 

  • Charlesworth, D. & J. R. Pannell. 2001. Mating systems and population genetic structure in the light of coalescent theory. Pp 73–95 In: Silvertown, J. & J., Antonovics, (eds.), Integrating ecology and evolution in a spatial context. Blackwell, Oxford.

  • Cheptou, P-O. 2012. Clarifying Baker's law. Annals of Botany (Oxford) 109: 633–641. https://doi.org/10.1093/aob/mcr127

    Article  Google Scholar 

  • Clark, C. 1998. Phylogeny and adaptation in the Encelia alliance (Asteraceae: Heliantheae). Aliso 17: 89–98.

    Article  Google Scholar 

  • Coates, D. J., M. R. Williams & S. Madden. 2013. Temporal and spatial mating-system variation in fragmented populations of Banksia cuneata, a rare bird-pollinated long-lived plant. Australian Journal of Botany 61: 235–242. doi: https://doi.org/10.1071/BT12244

    Article  Google Scholar 

  • Colicchio, J., P. J. Monnahan, C. A. Wessinger, K. Brown, J. R. Kern & J. K. Kelly. 2020. Individualized mating system estimation using genomic data. Molecular Ecology Resources 20: 333–347. DOI: https://doi.org/10.1111/1755-0998.13094

    Article  PubMed  Google Scholar 

  • Cowie, R. H., & B. S. Holland. 2006. Dispersal is fundamental to biogeography and the evolution of biodiversity on oceanic islands. Journal of Biogeography 33:193–198. https://doi.org/10.1111/j.1365-2699.2005.01383.x

    Article  Google Scholar 

  • Crawford, D. J., G. J. Anderson, L. Borges Silva, J. K. Kelly, M. Menezes de Sequeira, M. E. Mort, M. Moura & A. Santos-Guerra. 2015. Breeding systems in Tolpis (Asteraceae) in the Macaronesian Islands: the Azores, Madeira, and the Canaries. Plant Systematics and Evolution 308: 1981–1993. DOI https://doi.org/10.1007/s00606-015-1210-5

    Article  Google Scholar 

  • Crawford, D. J., G. J. Anderson & G. Bernardello. 2011. The reproductive biology of island plants, Pp. 11–36 In: Bramwell, D. & J. Caujape-Castells, (eds.), The biology of island floras. Cambridge University Press, Cambridge.

    Chapter  Google Scholar 

  • Crawford, D. J., J. K. Archibald, D. Stormer, M. E. Mort, J. K. Kelly & A. Santos-Guerra. 2008. A test of Baker’s law: the radiation of Tolpis (Asteraceae) in the Canary Islands. International Journal of Plant Sciences 169: 782–791. https://doi.org/10.1086/533604

    Article  Google Scholar 

  • Crawford, D., J. Archibald, J. Kelly, M. Mort & A. Santos-Guerra. 2010. Mixed mating in the “obligately outcrossing” Tolpis (Asteraceae) of the Canary Islands. Plant Species Biology 25: 114–119. DOI: https://doi.org/10.1111/j.1442-1984.2010.00275.x

    Article  Google Scholar 

  • Crawford, D. J., T. K. Lowrey, G. J. Anderson, G. Bernardello, A. Santos-Guerra & T. F. Stuessy. 2009. Genetic diversity in the colonizing ancestors of Asteraceae endemic to oceanic islands: Baker’s law and polyploidy, Pp. 139–151 In: Funk, V. A., A. Susanna, T. F. Stuessy & R. J. Bayer, (eds.), Systematics, evolution and biogeography of the Compositae. International Organization of Plant Taxonomy, Vienna.

    Google Scholar 

  • Crawford, D. J., M. Menezes de Sequeira, M. E. Mort, B. Kerbs & J. K. Kelly. 2022. Evidence for spatial and temporal variation in mating system of Tolpis macrorhiza (Asteraceae), a species endemic to Madeira Island. Botanical Journal of the Linnean Society 199: 849–861. https://doi.org/10.1093/botlinnean/boab103

    Article  Google Scholar 

  • Crawford, D. J., M. Moura, L. Borges Silva, M. E. Mort, B. Kerbs, H. Schaefer & J. K. Kelly. 2019. The transition to selfing in Azorean Tolpis (Asteracae). Plant Systematics and Evolution 305: 305–317. https://doi.org/10.1007/s00606-019-01573-7

    Article  Google Scholar 

  • Cronk, Q. C. B. 2000 The endemic flora of St. Helena (with colour plates by L. Ninnes). Anthony Nelson, Shropshire UK.

  • Crowe, L. K. 1954. Incompatibility in Cosmos bipinnatus. Heredity 8: 1–11.

    Article  Google Scholar 

  • Danton, P., C. Perrier & R. G. Martínez. 2006. Nouveau catalogue de la flore vasculaire de l’archipel Juan Fernández (Chili) [Nuevo catálogo de la flora vascular del Archipiélago Juan Fernández (Chile)]. Acta Botanica Gallica 153: 399–587.

    Article  Google Scholar 

  • Delprete, P. G. 1995. Systematic study of the genus Delilia (Asteraceae, Heliantheae) Plant Systematics and Evolution 194: 111–122.

    Article  Google Scholar 

  • Demeulenaere, E. & S. M. Ickert-Bond. 2022. Origin and evolution of the Micronesian biota: Insights frommolecular phylogenies and biogeography reveal long‐distance dispersal scenarios and founder‐event speciation. Journal of Systematics and Evolution 60: 973–997. doi: https://doi.org/10.1111/jse.12836

    Article  Google Scholar 

  • Dias, E. F., M. Moura, H. Schaefer & L. Silva. 2016. Geographical distance and barriers explain population genetic patterns in an endangered island perennial. AoB PLANTS 8: plw072; doi:https://doi.org/10.1093/aobpla/plw072

  • Dias, E. F., N. Killian, L. Silva, H. Schaefer, M. Carine, P. J. Rudall, A. Santos-Guerra & M. Moura. 2018. Phylogeography of the Macaronesian lettuce species Lactuca watsoniana and L. palmensis (Asteraceae). Biochemical Genetics 56: 315– 340.

    Article  CAS  PubMed  Google Scholar 

  • Dupont, Y. L. & C. Skov. 2004. Influence of geographical distribution and floral traits on species richness of bees (Hymenoptera: Apoidea) visiting Echium species (Boraginaceae) of the Canary Islands. International Journal of Plant Sciences 165: 377–386. https://doi.org/10.1086/382806

    Article  Google Scholar 

  • Eastwood, A. 2003. Evolution and conservation of Commidendrum and Elaphoglossum from St Helena. PhD thesis, University of Edinburgh, UK.

  • Eastwood, A., M. Gibby & Q. C. B. Cronk. 2004. Evolution of St Helena arborescent Astereae (Asteraceae): relationships of the genera Commidendrum and Melanodendron. Botanical Journal of the Linnean Society 144: 69–83.

    Article  Google Scholar 

  • Fehlberg, S. D. & T. A. Ranker. 2007. Phylogeny and biogeography of Encelia (Asteraceae) in the Sonoran and Peninsular Deserts based on multiple DNA sequences. Systematic Botany 32: 692–699.

    Article  Google Scholar 

  • Fernández-Mazuecos, M., P. Vargas, R., A. McCauley, D. Monjas, A. Otero, J. A. Chaves, J. E. G. Andino & G. Rivas-Torres. 2020. The radiation of Darwin’s giant daisies in the Galápagos Islands. Current Biology 30: 1–10.https://doi.org/10.1016/j.cub.2020.09.019

  • Ferreira, M. Z., J. Zahradnicek, J. Kadlecova, M. Menezes de Sequeira, J Chrtek & J. Feher. 2015. Tracing the evolutionary history of the little-known Mediterranean-Macaronesian genus Andryala (Asteraceae) by multigene sequencing. Taxon 64: 535–551.

    Article  Google Scholar 

  • Ferreira, J.S., J.E. Simon & J. Janick. 1997. Artemisia annua: botany, horticulture, pharmacology. Horticultural Reviews 19: 319–371 J. Janick (ed.). John Wiley & Sons, New York.

  • Ferrer, M. M. & S. V. Good-Avila. 2007. Macrophylogenetic analyses of the gain and loss of self-incompatibility in the Asteraceae. New Phytologist 173: 401– 414. doi: https://doi.org/10.1111/j.1469-8137.2006.01905.x

    Article  PubMed  Google Scholar 

  • Fiz, O., V. Valcárcel & P. Vargas. 2002. Phylogenetic position of Mediterranean Astereae and character evolution of daisies (Bellis, Asteraceae) inferred from nrDNA ITS sequences. Molecular Phylogenetics and Evolution 25: 157–171.

    Article  CAS  PubMed  Google Scholar 

  • Földesi, R., B. G. Howlett, I. Grass & P. Batáry. 2021. Larger pollinators deposit more pollen on stigmas across multiple plant species—A meta-analysis. Journal of Applied Ecology 58: 699–707. https://doi.org/10.1111/1365-2664.13798

    Article  Google Scholar 

  • Francisco-Ortega, J., J. C. Barber, A. Santos- Guerra, R. Febles-Hernandez, and R. K. Jansen. 2001b. Origin and evolution of the endemic genera of Gonosperminae (Asteraceae: Anthemideae) from the Canary Islands: evidence from nucleotide sequences of the internal transcribed spacers of the nuclear ribosomal DNA. American Journal of Botany 88: 161–169.

    Article  CAS  PubMed  Google Scholar 

  • https://floracanaria.com/especies/asteraceae/Allagopappus_canariensis.html (accessed April 20, 2023)

  • Francisco-Ortega, J., D. J. Crawford, A. Santos-Guerra & R. K. Jansen. 1997. Origin and evolution of Argyranthemum (Asteraceae: Anthemideae) in Macaronesia, Pp. 407-431, In: Givnish ,T. J. & K. J. Sytsma, (eds.), Molecular evolution and adaptive radiation. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Francisco-Ortega J., S. J. Park, A. Santos-Guerra, A. Benabid & R. K. Jansen 2001a. Origin and evolution of the endemic Macaronesian Inuleae (Asteraceae): Evidence from the internal transcribed spacers of nuclear ribosomal DNA Biological Journal of the Linnean Society 72: 77–97.

  • Fresnillo, B. & B. K. Ehlers. 2008. Variation in dispersibility among mainland and island populations of three wind dispersed plant species. Plant Systematics and Evolution 270: 243–255. https://doi.org/10.1007/s00606-007-0615-1

    Article  CAS  Google Scholar 

  • Galbany-Casals, M., J. M. Blanco-Moreno, N. Garcia-Jacas, I. Breitwieser & R. D. Smissen. 2011. Genetic variation in Mediterranean Helichrysum italicum (Asteraceae; Gnaphalieae): do disjunct populations of subsp. microphyllum have a common origin? Plant Biology 13: 678–68.

    Article  CAS  PubMed  Google Scholar 

  • (https://www.miteco.gob.es/es/biodiversidad/temas/inventarios-nacionales/354_tcm30-99130.pdf) (accessed April 20, 2023)

  • http://pza.sanbi.org/helichrysum-foetidum (accessed April 20, 2023)

  • Galbany-Casals, M., M. Unwin, N. Garcia-Jacas, R. D. Smissen, A. Susanna & R. J. Bayer. 2014. Phylogenetic relationships in Helichrysum (Compositae: Gnaphalieae) and related genera: Incongruence between nuclear and plastid phylogenies, biogeographic and morphological patterns, and implications for generic delimitation. TAXON 63: 608–624.

    Article  Google Scholar 

  • Ganders F. R., M. Berbee & M. Pirseyedi. 2000. ITS base sequence phylogeny in Bidens (Asteraceae): evidence for the continental relatives of Hawaiian and Marquesan Bidens. Systematic Botany 25:122–133.

    Article  Google Scholar 

  • Ganders, F. R. & K. M. Nagata. 1983. Relationships and floral biology of Bidens cosmoides (Asteraceae). Lyonia 2: 23–31.

    Google Scholar 

  • Ganders, F. R. & K. M. Nagata. 1984. The role of hybridization in the evolution of Bidens in the Hawaiian Islands. Pp. 179–194, In Grant, W. F., (ed.), Plant biosystematics. Academic Press, Orlando.

    Chapter  Google Scholar 

  • García-Verdugo, M. Mairal, P. Monroy, M. Sajeva & J. Caujapé-Castells. 2017. The loss of dispersal on islands hypothesis revisited: Implementing phylogeography to investigate evolution of dispersal traits in Periploca (Apocynaceae). Journal of Biogeography 44: 2595–2606.https://doi.org/10.1111/jbi.13050

  • Garnatje, T., S. Garcia & M. Á. Canela. 2007. Genome size variation from a phylogenetic perspective in the genus Cheirolophus Cass. (Asteraceae): biogeographic implications. Plant Systematics and Evolution 264: 117–134.

    Article  CAS  Google Scholar 

  • Gerstel, D. U., 1950 Self-incompatibility studies in Parthenium 11. Inheritance. Genetics 35:482–506.https://doi.org/10.1093/genetics/35.4.482

  • Gibson, M. J. S., D. J. Crawford, M. T. Holder, M. E. Mort, B. Kerbs, M. Menezes de Sequeira & J. K. Kelly. 2020. Genome-wide genotyping estimates mating system parameters and paternity in the island species Tolpis succulenta. American Journal of Botany 107: 1190–1197. doi:https://doi.org/10.1002/ajb2.1515

    Article  CAS  Google Scholar 

  • Gillett, G. W. & E. K. S. Lim. 1970. An experimental study of the genus Bidens in the Hawaiian Islands. University of California Publications in Botany 56: 1–63.

    Google Scholar 

  • Godley, E. J. 1979. Flower biology in New Zealand. New Zealand Journal of Botany 17: 441–466.

    Article  Google Scholar 

  • Goodenough, S. 1985. St. Helena and its endemic plants – a conservation success: The best known unfamiliar land in the world. The Kew Magazine. 2 (No. 4): 369–379.

  • Goodwillie, C. & J. J. Weber. 2018. Best of both worlds? A review of delayed selfing in flowering plants. American Journal of Botany 105: 641–655. doi:https://doi.org/10.1002/ajb2.1045

    Article  PubMed  Google Scholar 

  • Goertzen, L. R., J. Francisco-Ortega, A. Santos-Guerra, J. P. Mower, C. R. Linder & R. K. Jansen. 2002. Molecular systematics of the Asteriscus alliance (Asteraceae: Inuleae) II: Combined nuclear and chloroplast data. Systematic Botany 27: 815–823.

    Google Scholar 

  • Grossenbacher, D. L., Y. Brandvain, J. R. Auld, M. Burd, P.-O. Cheptou, J. K. Conner, A. G. Grant, S. M. Hovick, J. R. Pannell, A. Pauw, T. Petanidou, A. M. Randle, R. R. de Casas, J. Vamosi, A. Winn, B. Igic, J. W. Busch, S. Kalisz & E. E. Goldberg. 2017. Self-compatibility is over-represented on islands. New Phytologist 215: 469–478. doi: https://doi.org/10.1111/nph.14534

    Article  PubMed  Google Scholar 

  • Guerrina, M., G. Casazza, E. Conti, C. Macrì & L. Minuto. 2016. Reproductive biology of an Alpic paleo-endemic in a changing climate. Journal of Plant Research 129: 477–485. DOI: https://doi.org/10.1007/s10265-016-0796-1

    Article  PubMed  Google Scholar 

  • Halverson, T. & L. Borgen. 1986. The perennial Macaronesian species of Bubonium (Compositae-Inuleae). Sommerfeltia 3: 1–102.

    Article  Google Scholar 

  • Hanski, I. 2010. The theories on island biogeography and metapopulation dynamics: science marches forward, but the legacy of good ideas lasts for a long time. Pp. 186–213, In: Losos, J. B. & R. E. Ricklefs, (eds.), The theory of island biogeography revisited. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Hansen, D. R., R. K. Jansen, R. F. Sage, J. L. Villaseñor & B. B. Simpson. 2016. Molecular phylogeny of Pectis (Tageteae, Asteraceae), a C4 genus of the neotropics, and its sister genus Porophyllum. Lundellia, 19: 6–38 https://doi.org/10.25224/1097-993X-19.1.6

  • Hardy, O. J., S. C. González-Martínez, B. Colas, H. Fréville, A. Mignot & I.Olivieri. 2004. Fine-scale genetic structure and gene dispersal in Centaurea corymbosa (Asteraceae). II. Correlated paternity within and among sibships. Genetics 168: 1601–1614. DOI: https://doi.org/10.1534/genetics.104.027714

    Article  PubMed  PubMed Central  Google Scholar 

  • Heiden, G., A. Antonelli & J. R. Pirani. 2019. A novel phylogenetic infrageneric classification of Baccharis (Asteraceae: Astereae), a highly diversified American genus. Taxon 68: 1048–1081.

    Article  Google Scholar 

  • Herrando-Moraira S, S. the Cardueae Radiations Group (in alphabetical order), J. A. Calleja, M. Galbany-Casals, N. Garcia-Jacas, J.-Q. Liu, J. Lopez-Alvaradob, J. Lopez-Pujola, J. R. Mandel, S. Masso, N. Montes-Moreno, C. Roquet, L. Saez, A. Sennikov, A. Susanna & R. Vilatersana. 2019. Nuclear and plastid DNA phylogeny of tribe Cardueae (Compositae) with Hyb-Seq data: A new subtribal classification and a temporal diversification framework. Molecular Phylogenetics and Evolution 137: 313–322.

  • Herrera, J. 1987. Flower and fruit biology in southern Spanish Mediterranean shrublands. Annals of the Missouri Botanical Garden 74: 69 –78.

    Article  Google Scholar 

  • Heyn, C. C. and A. Joel. 1983. Reproductive relationships between annual species of Calendula (Compositae). Plant Systematics and Evolution 143: 311–329.

    Article  Google Scholar 

  • Hidalgo, O, N. Garcia-Jacas, T. Garnatje & A. Susanna. 2006. Phylogeny of Rhaponticum (Asteraceae, Cardueae–Centaureinae) and related genera inferred from nuclear and chloroplast DNA sequence data: taxonomic and biogeographic implications. Annals of Botany (Oxford) 97: 705–714.

    Article  CAS  Google Scholar 

  • Hintze, C., F. Heydel, C. Hoppe, S. Cunze, A. Konig & O. Tackenberg. 2013. D3 : The dispersal and diaspore database-baseline data and statistics on seed dispersal. Perspectives in Plant Ecology, Evolution and Systematics 15: 180–192. https://doi.org/10.1016/j.ppees.2013.02.001

    Article  Google Scholar 

  • Hiscock, S. J. 2000. Genetic control of self-incompatibility in Senecio squalidus L. (Asteraceae): a successful colonizing species. Heredity 85: 10–19. doi:https://doi.org/10.1046/j.1365-2540.2000.00692.x

    Article  PubMed  Google Scholar 

  • Hiscock, S. J. & D. A. Tabah. 2003. The different mechanisms of sporophytic self-incompatibility. Philosophical Transactions of the Royal Society of London. Series B. 358: 1037-1045. https://doi.org/10.1098/rstb.2003.1297

  • Hobbs C.R. & B. G. Baldwin. 2013. Asian origin and upslope migration of Hawaiian Artemisia (Compositae–Anthemideae). Journal of Biogeography 40: 442–454.

    Article  Google Scholar 

  • Hu. X.-S. 2015. Mating system as a barrier to gene flow. Evolution 69 1158–1177. doi:https://doi.org/10.1111/evo.12660

    Article  CAS  PubMed  Google Scholar 

  • Hughes, M. B. & E. B. Babcock. 1950. Self-incompatibility in Crepis foetida L. subsp. rhoeadifolia Bieb. Schinze & Keller. Genetica 35: 570–588.

  • Humeau, I., T. Pailler & J. D. Thompson. 1999. Cryptic dioecy and leaky dioecy in endemic species of Dombeya (Sterculiaceae) on La Reunion. American Journal of Botany 86:1437–1447. https://doi.org/10.2307/2656925

    Article  CAS  PubMed  Google Scholar 

  • Igíc, B., and J. R. Kohn. 2006. The distribution of plant mating systems: study bias against obligately outcrossing species. Evolution 60: 1098–1103. https://doi.org/10.1111/j.0014-3820.2006.tb01186.x

    Article  PubMed  Google Scholar 

  • Ison, J. L., S. Wagenius, D. Reitz & M. V. Ashley. 2014. Mating between Echinacea angustifolia (Asteraceae) individuals increases with their flowering synchrony and spatial proximity. American Journal of Botany 101: 180–189. doi:https://doi.org/10.3732/ajb.1300065

    Article  PubMed  Google Scholar 

  • Jarvis, C. E. 1980. Systematic studies in the genus Tolpis Adanson. Ph. D. Dissertation, Univ. Reading, UK.

  • Jansen, R. K. 1985. The systematics of Acmella (Asteraceae-Heliantheae). Systematic Botany Monographs 8: 1–115.

    Article  Google Scholar 

  • Jaramillo Díaz, P., A. Guézou, A. Mauchamp & A. Tye. 2018. CDF Checklist of Galapagos Flowering Plants - FCD Lista de especies de Plantas con flores Galápagos. In: Bungartz, F., H. Herrera, P. Jaramillo, N. Tirado, G. Jiménez-Uzcátegui, D. Ruiz, A. Guézou & F. Ziemmeck., (eds.), Charles Darwin Foundation Galapagos Species Checklist - Lista de Especies de Galápagos de la Fundación Charles Darwin. Charles Darwin Foundation / Fundación Charles Darwin, Puerto Ayora, Galapagos.

  • Jenkins, J. A. 1939. The cytogenetic relationships of four species of Crepis. University of California Publications in Agricultural Sciences 6: 369–400.

    Google Scholar 

  • Jones, K. E., S. Pérez-Espona, J. A. Reyes-Betancort, D. Pattinson, J. Caujapé-Castells, S. J. Hiscock & M. A. Carine. 2016. Why do different oceanic archipelagos harbour contrasting levels of species diversity? The macaronesian endemic genus Pericallis (Asteraceae) provides insight into explaining the ‘Azores diversity Enigma’ BMC Evolutionary Biology 16:202 DOI https://doi.org/10.1186/s12862-016-0766-1

  • Jones, K. E., J. A. Reyes-Betancort, S. J. Hiscock & M. A. Carine. 2014. Allopatric diversification, multiple habitat shifts, and hybridization in the evolution of Pericallis (Asteraceae), a Macaronesian endemic genus. American Journal of Botany 10: 637–651.

    Article  Google Scholar 

  • Jones, K. E., E. E. Schilling, E. F. Dias & N. Kilian. 2018: Northern Hemisphere disjunctions in Lactuca (Cichorieae, Asteraceae): independent Eurasia to North America migrations and allopolyploidization. – Willdenowia 48: 259–284. doi: https://doi.org/10.3372/wi.48.48206.

  • Käfer, J., G. A. B. Marais & J. R. Pannell. 2017. On the rarity of dioecy in flowering plants. Molecular Ecology 26: 1225–1241. https://doi.org/10.1111/mec.14020

    Article  PubMed  Google Scholar 

  • Karron, J. D., C. T. Ivey, R. J. Mitchell, M. R. Whitehead, R. Peakall & A. L. Case. 2011. New perspectives on the evolution of plant mating systems. Annals of Botany (Oxford) 109: 493–503. https://doi.org/10.1093/aob/mcr319

    Article  Google Scholar 

  • Kato, M. & H. Nagamasu. 1995. Dioecy in the endemic genus Dendrocacalia (Compositae) on the Bonin (Ogasawara) Islands. Journal of Plant Research. 108: 443–450.

    Article  Google Scholar 

  • Kavanagh, P. H. & K. C. Burns. 2014. The repeated evolution of large seeds on islands. Proceedings of the Royal Society B 281: 20140675. http://dx.doi.org/https://doi.org/10.1098/rspb.2014.0675

    Article  PubMed  PubMed Central  Google Scholar 

  • Keil, D. J. 1978. Revision of Pectis section Pectidium (Compositae Tageteae). Rhodora 80: 135–146.

    Google Scholar 

  • Kerbs B., D. J. Crawford, G. White, M. Moura, L. Borges Silva, H. Schaefer, K. Brown, M. E. Mort & J. K. Kelly. 2020. How rapidly do self‐compatible populations evolve selfing? Mating system estimation within recently evolved self‐compatible populations of Azorean Tolpis succulenta (Asteraceae). Ecology and Evolution 13990–13999. https://doi.org/10.1002/ece3.6992

  • Kilian, N., M. Galbany-Casals & C. Oberprieler. 2010. Helichrysum nicolai (Compositae, Gnaphalieae), systematics of a new dwarf local endemic of the Cape Verde Islands, W Africa. Folia Geobotanica 45(2):183–199.

    Article  Google Scholar 

  • Killian, N., B. Gemeinholzer & H. W. Lack. 2009. Cichorieae. Pp. 345–383 In: Funk, V. A., A. Susanna, T. F. Stuessy & R. J. Bayer, (eds.), Systematics, evolution and biogeography of the Compositae. International Organization of Plant Taxonomy, Vienna.

    Google Scholar 

  • Kim, S-C. 2007. Mapping unexplored genomes: a genetic linkage map of the woody Sonchus Alliance (Asteraceae: Sonchinae) in the Macaronesian Islands. Journal of Heredity 98(4): 293–299. doi: https://doi.org/10.1093/jhered/esm052

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.-C., D.J. Crawford, J. Francisco-Ortega & A. Santos-Guerra. 1996. A common origin for woody Sonchus and five related genera in the Macaronesian Islands: Molecular evidence for extensive radiation. Proceedings of the National Academy of Sciences of the United States of America 93: 7743–7748.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • King C., G. Ballantyne & P. G. Willmer. 2013. Why flower visitation is a poor proxy for pollination: measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods in Ecology and Evolution 4: 811–818. https://doi.org/10.1111/2041-210X.12074

    Article  Google Scholar 

  • Knope, M. L., C. W. Morden, V. A. Funk & T. Fukami. 2012. Area and the rapid radiation of Hawaiian Bidens (Asteraceae). Journal of Biogeography 39(7): 1206–16. https://doi.org/10.1111/j.1365-2699.2012.02687.x

    Article  Google Scholar 

  • Knope, M. L., V. A. Funk, M. A. Johnson, W. L. Wagner, E. M. Datlof, G. Johnson, D. J. Crawford, J. M. Bonifacino , C. W. Morden, D. H. Lorence, K. R. Wood, J.‐Y. Meyer & S. Carlquist. 2020. Dispersal and adaptive radiation of Bidens (Compositae) across the remote archipelagoes of Polynesia. Journal of Systematics and Evolution 58: 805–822. doi: https://doi.org/10.1111/jse.1270

    Article  Google Scholar 

  • König C, P. Weigelt, A. Taylor, A. Stein, W. Dawson, F. Essl, J. Pergl, P. Pyšek, M. van Kleunen, M. Winter, C. Chatelain, J. J. Wieringa, P. Krestov & H. Kreft. 2021. Source pools and disharmony of the world’s island floras. Ecography 44: 44–55. doi: https://doi.org/10.1111/ecog.05174

    Article  ADS  Google Scholar 

  • Koseva, B., D. J. Crawford, K. Brown, M. E. Mort & J. K. Kelly. 2017. The genetic breakdown of self-incompatibility in Tolpis coronopifolia (Asteraceae). New Phytologist 216: 1256–1267. doi: https://doi.org/10.1111/nph.14759

    Article  CAS  PubMed  Google Scholar 

  • Kreft, H., W. Jetz, J. Mutke, G. Kier & W. Barthlott. 2008. Global diversity of island floras from a macroecological perspective. Ecology Letters 11: 116–127. doi: https://doi.org/10.1111/j.1461-0248.2007.01129.x

    Article  PubMed  Google Scholar 

  • Lafuma, L. & S. Maurice. 2007. Increase in mate availability without loss of self-incompatibility in the invasive species Senecio inaequidens (Asteraceae). Oikos 116: 201–208.

    ADS  Google Scholar 

  • Lambdon, P.W. & S. Ellick. 2016a. Lachanodes arborea. The IUCN Red List of Threatened Species 2016: e.T37595A67370818. https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T37595A67370818.en. (Accessed April 20, 2023)

  • Lambdon, P.W. & S. Ellick. 2016b. Pladaroxylon leucadendron. The IUCN Red List of Threatened Species 2016: e.T37596A67371569. https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T37596A67371569.en. (Accessed April 20, 2023)

  • Lambdon, P.W. & S. Ellick. 2016c. Petrobium arboreum. The IUCN Red List of Threatened Species 2016: e.T37597A67371334. https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T37597A67371334.en. Downloaded on 21 May 2021. (Accessed April 20, 2023)

  • Lane, M. A.1996. Pollination biology of Compositae. Pp. 61–80, In Caligari, P. D. S. & D. J. N. Hind (eds.), Compositae: biology and utilization, Proceedings of the International Compositae Conference. Royal Botanic Gardens, Kew, UK.

  • Lara‐Romero, C., J. Seguí, A. Pérez‐Delgado, M. Nogales & A. Traveset. 2019. Beta diversity and specialization in plant–pollinator networks along an elevational gradient. Journal of Biogeography 46:1598–1610. https://doi.org/10.1111/jbi.13615

  • Lawrence, M. E. 1985. Senecio L. (Asteraceae) in Australia: Reproductive biology of a genus found primarily in unstable environments. Australian Journal of Botany 33: 197 – 208. https://doi.org/10.1071/BT9850197

    Article  Google Scholar 

  • Lenzner, B., P. Weigelt, H. Kreft, C. Beierkuhnlein & M. J. Steinbauer. 2017. The general dynamic model of island biogeography revisited at the level of major flowering plant families Journal of Biogeography 44: 1029–040. https://doi.org/10.1111/jbi.12906

    Article  Google Scholar 

  • Levin, D. A. 1996. The evolutionary significance of pseudo- self-fertility. The American Naturalist 148: 321–332. https://doi.org/10.1086/285927

    Article  Google Scholar 

  • Li, X.-M., W.-J. Liao, L. M. Wolfe & D.-Y. Zhang. 2012. No evolutionary shift in the mating system of North American Ambrosia artemisiifolia (Asteraceae) following its introduction to China. PLoS ONE 7(2): e31935. https://doi.org/10.1371/journal.pone.0031935

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichter-Marck, I. H. & B. G. Baldwin. 2022. A phylogenetically informed reclassification of the rock daisies (Perityleae; Compositae). Systematic Botany 47 (3): 802–816. https://doi.org/10.1600/036364422X16573019348328

    Article  Google Scholar 

  • Lord, J. M. 2015. Patterns in floral traits and plant breeding systems on Southern Ocean Islands. AoB PLANTS 7: plv095; doi:https://doi.org/10.1093/aobpla/plv095

  • Lloyd, D. G. 1972. Breeding systems in Cotula L. (Compositae, Anthemideae) 1. The array of monoclinous and diclinous systems. New Phytologist 71: 1181–1194.

    Article  Google Scholar 

  • Lowrey, T. K. 1986. A biosystematic revision of Hawaiian Tetramolopium (Compositae; Astereae). Allertonia 4: 203–246.

    Google Scholar 

  • Lowrey, T. K., R. Whitkus & W. R. Sykes. 2005. A new species of Tetramolopium (Asteraceae) from Mitiaro, Cook Islands: biogeography, phylogenetic relationships, and dispersal. Systematic Botany 30: 448–455. DOI: https://doi.org/10.1600/0363644054223693

    Article  Google Scholar 

  • Luijten, S. H., J. G. B. Oostermeijer, N. C. Van Leeuwen & H. C. M. Den Nijs. 1996. Reproductive success and clonal genetic structure of the rare Arnica montana (Compositae) in The Netherlands. Plant Systematics and Evolution 201: 15–30. https://doi.org/10.1007/BF00989049

    Article  CAS  Google Scholar 

  • Mandel, J. R., R. B. Dikow, C. M. Siniscalchi, R. Thapa, L. E. Watson & V. A. Funk. 2019. A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proceedings of the National Academy of Sciences, USA. 116: 14083–14088. https://doi.org/10.1073/pnas.1903871116

    Article  ADS  CAS  Google Scholar 

  • Manole, A. 2015. First mature fruit description of Pietrosia laevitomentosa (Asteraceae) and its implications to the taxonomic position of the genus Pietrosia. Phytotaxa 197: 282–290.

    Article  Google Scholar 

  • Marshall, D. F. & R. J. Abbott. 1984a. Polymorphism for outcrossing frequency at the ray floret locus in Senecio vulgaris. II. Confirmation. Heredity 52: 331–336.

    Article  Google Scholar 

  • Marshall, D. F. & R. J. Abbott. 1984b. Polymorphism for outcrossing frequency at the ray floret locus in Senecio vulgaris. III. Causes. Heredity 53: 145–149.

    Article  Google Scholar 

  • McMullen, C. K. 1987. Breeding systems of selected Galápagos Islands angiosperms. American Journal of Botany 74:1694–1705.

    Article  Google Scholar 

  • McMullen, C. K. 1999. Flowering plants of the Galápagos. Cornell University Press, Ithaca.

    Book  Google Scholar 

  • McMullen, C. K. & D. M. Viderman. 1994. Comparative studies on the pollination biology of Darwiniothamnus tenuifolius (Asteraceae) and Plumbago scandens (Plumbaginaceae) on Pinta Island and Santa Cruz Island, Galapagos. Phytologia 76: 30–38.

    Google Scholar 

  • Mejias, J. A. 1994. Self-fertility and associated flower head traits in the Iberian taxa of Lactuca and related genera (Asteraceae, Lactuceae). Plant Systematics and Evolution 191: 147-160.

    Article  Google Scholar 

  • Mitchell, R. J., W. G. Wilson, K. G. Holmquist & J. D. Karron. 2013. Influence of pollen transport dynamics on sire profiles and multiple paternity in flowering plants. PLoS One 8: e76312 doi:https://doi.org/10.1371/journal.pone.0076312

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Montes-Moreno, N., L. Sáez, C. Benedí, A. Susanna & N. Garcia-Jacas. 2010. Generic delineation, phylogeny and subtribal affinities of Phagnalon and Aliella (Compositae, Gnaphalieae) based on nuclear and chloroplast sequences. Taxon 59: 1654–1670.

    Article  Google Scholar 

  • Mort, M. E., D. J. Crawford, J. K. Kelly, A. Santos‐Guerra, M. Menezes de Sequeira, M. Moura & J. Caujape‐Castells. 2015. Multiplexed‐shotgun‐genotyping data resolve phylogeny within a very recently derived insular lineage. American Journal of Botany 102: 634–641. doi:https://doi.org/10.3732/ajb.1400551

    Article  PubMed  Google Scholar 

  • Mort, M. E., B. R. Kerbs, J. K. Kelly, L. Borges Silva, M. Moura, M. Menezes de Sequeira, A. Santos-Guerra. H. Schaefer, J. A. Reyes-Bentancort; J. Caujapé-Castells & D. J. Crawford. 2022. Multiplexed-shotgun-genotype (MSG) data resolve phylogenetic relationships within and among archipelagos in Macaronesian Tolpis (Asteraceae). American Journal of Botany 109: 952–965. DOI: https://doi.org/10.1002/ajb2.1866

    Article  CAS  PubMed  Google Scholar 

  • Muyle, A. & G. Marais. 2016. Mating systems and genome evolution in plants. Pp. 480–492 In: Kliman, R.M., (ed.), Encyclopedia of evolutionary biology. vol. 2, Academic Press, Oxford. DOI: https://doi.org/10.1016/B978-0-12-800049-6.00320-6

  • Neal, P. R. & G. J. Anderson. 2005. Are ‘mating systems’ ‘breeding systems’ of inconsistent and confusing terminology in plant reproductive biology? or is it the other way around? Plant Systematics and Evolution 250: 173–185. DOI https://doi.org/10.1007/s00606-004-0229-9

    Article  Google Scholar 

  • Negrea, B. M. & E. Pricop. 2009. The endemic plant species Pietrosia levitomentosa, a real conservation challenge. Advances in Environmental Sciences-International Journal of the Bioflux Society 1: 1–11.

    Google Scholar 

  • Nesom, G.L. 2020. Helodeaster, a new genus for Hawaiian Keysseria (Asteraceae: Astereae). Phytoneuron 2020-54: 1–6.

    Google Scholar 

  • Nielsen, L. R., M. Philipp, H. Adsersen & H. R. Siegismund. 2000. Breeding system of Scalesia divisa Andersson, an endemic Asteraceae from the Gala´pagos Islands. Det Norske Videnskaps-Akademi I.Matematisk-Naturvidenskapelige Klasse, Shrifter, Ny Serie 39:127–138.

  • Nielsen, L., H. S. Siegismund & M. Philipp. 2003. Partial self-incompatibility in the polyploid endemic species Scalesia affinis (Asteraceae) from the Galápagos: remnants of a self-incompatibility system? Botanical Journal of the Linnean Society 142: 93–101. DOI: https://doi.org/10.1046/j.1095-8339.2003.00168.x

    Article  Google Scholar 

  • Nora, S., A. Aparicio & R. G. Albaladejo. 2016. High correlated paternity leads to negative effects on progeny performance in two Mediterranean shrub species. PLoS One 11: e0166023. https://doi.org/10.1371/journal.pone.0166023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noyes, R.D. 2000. Biogeographical and evolutionary insights on Erigeron and allies (Asteraceae) from ITS sequence data. Plant Systematics and Evolution 220: 93–114.

    Article  CAS  Google Scholar 

  • Noyes R. D. & P. Bailey. 2014. Chromosome number and reproductive attributes for Erigeron lemmonii (Asteraceae), a cliff-dwelling endemic of southeastern Arizona. Madroño 61: 9–15.

    Article  Google Scholar 

  • Olangua-Corral, M. 2016. El género Argyranthemum Webb ex Sch.Bip. (Asteraceae-Anthemideae) en Gran Canaria. Evaluación de la biodiversidad, biología reproductiva y viabilidad de sus poblaciones naturales, 467 pp. Universidad de Las Palmas de Gran Canaria, Gran Canaria.

  • Ornduff, R. 1966. A biosystematic survey of the goldfield genus Lasthenia (Compositae: Helenieae). University of California Publications in Botany 40: 1–92.

    Google Scholar 

  • Ortega Gonzalez, C. & C. Gonzalez Aleman. 1986. Contribucion a la conservacion “ex situ” de especies Canarias en peligro: Propagacion “in vito” de Senecio hermosae Pitard. Botanica Macaronesica 14: 59–72.

    Google Scholar 

  • Palazzesi, L., J. Pellicer., V. D. Barred, B. Loeuille, J. R. Mandel, L. Pokorny, C. M. Siniscalchi, M. C. Tellería, I. J. Leitch & O. Hidalgo. 2022. Asteraceae as a model system for evolutionary studies: from fossils to genomes. Botanical Journal of the Linnean Society 200: 143–164. https://doi.org/10.1093/botlinnean/boac032

    Article  Google Scholar 

  • Pannell, J. R. 2015. Evolution of the mating system in colonizing plants. Molecular Ecology 24: 2018–2037. doi:https://doi.org/10.1111/mec.13087

    Article  PubMed  Google Scholar 

  • Pannell, J. R, J. R. Auld, Y. Brandvain, M. Burd, J.W. Busch, P.-O. Cheptou, J. K. Conner, E. E. Goldberg, A. Grant, D. L. Grossenbacher, S. M. Hovick, B. Igic, S. Kalisz, T. Petanidou, A. M. Randle, R. R. de Casas, A. Pauw, J. C. Vamosi & A. A, Winn. 2015. The scope of Baker’s law. New Phytologist 208: 656–667. https ://doi.org/https://doi.org/10.1111/nph.13539

  • Pannell, J. R. & A.-M. Labouche. 2013. The incidence and selection of multiple mating in plants. Philosophical Transactions of the Royal Society, B, Biological Sciences 368: 20120051.

    Article  Google Scholar 

  • Pannell, J. R. & M. Voillemot. 2017. Evolution and ecology of plant mating systems. In: eLS. John Wiley & Sons, Ltd: Chichester. DOI: https://doi.org/10.1002/9780470015902.a0021909.pub2

  • Pelser, P. B., A. H. Kennedy, E. J. Tepe, J. B. Shidler, B. Nordenstam, J. W. Kadereit & L. E. Watson. 2010. Patterns and causes of incongruence between plastid and nuclear Senecioneae (Asteraceae) phylogenies. American Journal of Botany 97: 856–873. https://doi.org/10.3732/ajb.0900287

    Article  CAS  PubMed  Google Scholar 

  • Pelser, P. B., B. Nordenstam, J. W. Kadereit & L. E. Watson. 2007. An ITS phylogeny of tribe Senecioneae (Asteraceae) and a new delimitation of Senecio L. Taxon 56: 1077–1104.

    Article  Google Scholar 

  • Penneckamp, D. N., Susanna, A., Garcia-Jacas, N., Rojas, G., Mekis, L., Stuessy, T. F., Baeza, C. M., Novoa, P., Danton, P. & Perrier, C. 2022. A new species of the endemic genus Centaurodendron Johow (Asteraceae, Centaureinae) from Alejandro Selkirk Island, Juan Fernández Archipelago, Chile. Gayana Botánica 79: 27-36.

    Article  Google Scholar 

  • Penñas, J., J. Lorite, F. Alba-Sánchez & M.A Taisma. 2011. Self-incompatibility, floral parameters, and pollen characterization in the narrow endemic and threatened species Artemisia granatensis (Asteraceae). Anales del Jardín Botánico de Madrid 68: 97–105.

    Article  Google Scholar 

  • Pérez de Paz, J., R. Febles, O. Fernández-Palacios Acosta & M. Olangua Corral. 2017. Flores y polen. Éxito reproductivo de las angiospermas en Canarias. Origen, evolución y conservación. Revista de la Academia Canaria de Ciencias XXIX: 111–2002 (diciembre de 2017.

  • Philipp, M., L., B. Hansen, H. Adsersen & H. R. Siegismund. 2004. Reproductive ecology of the endemic Lecocarpus pinnatifidus (Asteraceae) in an isolated population in the Galápagos Islands. Botanical Journal of the Linnean Society 146: 171-180.https://doi.org/10.1111/j.1095-8339.2004.00323.x

  • Philipp, M., L. & L. R. Nielsen. 2010. Reproductive ecology of Scalesia cordata (Asteraceae), an endangered species from the Galápagos Islands. Botanical Journal of the Linnean Society 162: 496–503. https://doi.org/10.1111/j.1095-8339.2010.01034.x

  • Philipp, M., J Bocher, H. R. Siegismund & L. R. Nielsen. 2006. Structure of a plant-pollinator network on a pahoehoe lava desert of the Galápagos Islands. Ecography 29: 531–540. https://doi.org/10.1111/j.0906-7590.2006.04546.x

    Article  ADS  Google Scholar 

  • Rabakonandrianina, E. & G. D. Carr. 1981. Intergeneric hybridization, induced polyploidy, and the origin of the Hawaiian endemic Lipochaeta from Wedelia (Compositae). American Journal of Botany 68: 206–215.

    Article  Google Scholar 

  • Reinartz, J. A. & D. H. Les. 1994. Bottleneck-induced dissolution of self-incompatibility and breeding system consequences in Aster furcatus (Asteraceae). American Journal of Botany 81: 446–455. https://doi.org/10.2307/2445494

    Article  Google Scholar 

  • Renner. S. S. 2014. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. American Journal of Botany 100: 1588–1596. DOI: https://doi.org/10.3732/ajb.1400196

    Article  Google Scholar 

  • Reyes-Betancort, J. A. 2003. Una especie nueva del género Carduus en las islas Canarias (Asteraceae). VIERAEA 31: 293–301.

    Google Scholar 

  • Rhodes, M. K., J. B. Fant & K. A. Skogen 2017. Pollinator identity and spatial isolation influence multiple paternity in an annual plant. Molecular Ecology 26: 4296–4308. https://doi.org/10.1111/mec.14115

    Article  PubMed  Google Scholar 

  • Ritland, K. & F. R. Ganders. 1985. Variation in the mating system of Bidens menziesii (Asteraceae) in relation to population substructure. Heredity 55: 235–244.

    Article  Google Scholar 

  • Rodríguez‐Rodríguez, P., P. L. Pérez de Paz & P. A. Sosa. 2018. Species delimitation and conservation genetics of the Canarian endemic Bethencourtia (Asteraceae). Genetica 146:199–210

    Article  PubMed  Google Scholar 

  • Romeiras, M., S. Scatarino, I. Gomes, C. Fernandes, J. C. Costa, J. Caujapé-Castells & M. C. Duarte. 2016. IUCN Red List assessment of the Cape Verde endemic flora: towards a global strategy for plant conservation in Macaronesia Botanical Journal of the Linnean Society180: 413–425.https://doi.org/10.1111/boj.12370

  • Roque, N., D. J. Keil & A. Susanna. 2009. Illustrated glossery of Compositae. Pp. 781–806 In: Funk, V. A., A. Susanna, T. F. Stuessy & R. J. Bayer, (eds), Systematics, evolution and biogeography of the Compositae. International Organization of Plant Taxonomy, Vienna.

    Google Scholar 

  • Routley, M. B., R. I. Bertin & B. C. Husband. 2004. Correlated evolution of dichogamy and self-incompatibility: a phylogenetic perspective. International Journal of Plant Sciences 165: 983–993. https://doi.org/10.1086/423881

    Article  Google Scholar 

  • Sakai, A. K., W, L. Wagner, D. M. Ferguson & D. R. Herbst. 1995. Origins of dioecy in the Hawaiian Flora. Ecology 76: 2517–2529.https://doi.org/10.2307/2265825

  • Schaefer, H. 2005. Flora of the Azores-a field guide, 2nd ed. Margraf Publishers, Wilkersheim

    Google Scholar 

  • Schultz, S. T. & F. R. Ganders. 1996. Evolution of unisexuality in the Hawaiian flora: a test of microevolutionary theory. Evolution 50: 842–855. https://doi.org/10.1111/j.1558-5646.1996.tb03893.x

    Article  PubMed  Google Scholar 

  • Sheldon, J. C. & F. M. Burrows. 1973. The dispersal effectiveness of the achene-pappus units of selected compositae in steady winds with convection. New Phytologist 72: 665–675. https://doi.org/10.1111/j.1469-8137.1973.tb04415.x

    Article  Google Scholar 

  • Sherff, E. E. 1937. The genus Bidens. Field Museum of Natural History, Botanical Series. 16:1–721.

  • Silva, J. L., A. C. Brennan & J. A. Mejías. 2016. Population genetics of self-incompatibility in a clade of relict cliff-dwelling plant species. AoB PLANTS 8: plw029; https://doi.org/10.1093/aobpla/plw029

  • Silva L, M.Moura, H. Schaefer, F. Rumsey & E. F. Dias 2010. Lista das plantas vasculares (Tracheobionta). List of vascular plants (Tracheobionta). Pp 117–146 In: Borges. P. A.V. et al., (eds.) A List of the Terrestrial and Marine Biota from the Azores. Cascais, Princípia.

  • Smissen, R. D., I. Breitwieser & P. J. de Lange. 2022. Pseudognaphalium (Asteraceae, Gnaphalieae) diversity in New Zealand revealed by DNA sequences with notes on the phylogenetic relationships of Hawaiian Islands plants referred to Pseudognaphalium sandwicensium. New Zealand Journal of Botany. https://doi.org/10.1080/0028825X.2022.2132871

  • Soto-Trejo, F., J. K. Kelly, J. K. Archibald, M. E. Mort, A. Santos-Guerra & D. J. Crawford. 2013. The genetics of self-compatibility and associated floral characters in Tolpis (Asteraceae) in the Canary Islands. International Journal of Plant Sciences 174: 171–178. DOI:https://doi.org/10.1086/668788

    Article  Google Scholar 

  • Stebbins, G. L. 1957. Self-fertilization and population variability in the higher plants. The American Naturalist 91: 337–354.

    Article  ADS  Google Scholar 

  • Stuessy, T. F., R. Rodriguez, C. M. Baeza & P. Lopez-Sepulvada. 2018. Taxonomic inventory. Pp. 57–97. In: Stuessy, T. F., D. J. Crawford, P. López-Sepúlveda, C. M. Baeza & E. Ruiz, (eds.), Plants of oceanic islands: evolution, biogeography, and conservation of the flora of the Juan Fernández (Robinson Crusoe) Archipelago. Cambridge University Press, Cambridge.

    Google Scholar 

  • Suarez-Gonzalez, A. & S. V. Good. 2013. Pollen limitation and reduced reproductive success are associated with local genetic effects in Prunus virginiana, a widely distributed self-incompatible shrub. Annals of Botany (Oxford) 113: 595–605. https://doi.org/10.1093/aob/mct289

    Article  Google Scholar 

  • Sun, M. 1987. Genetics of gynodioecy in Hawaiian Bidens. Heredity 59: 327–336. DOI: https://doi.org/10.1038/hdy.1987.139

    Article  Google Scholar 

  • Sun, M. & F. R. Ganders. 1986. Female frequencies in gynodioecious populations correlated with selfing rates in hermaphrodites. American Journal of Botany 73: 1645–1648. https://doi.org/10.1002/j.1537-2197.1986.tb10917.x

    Article  Google Scholar 

  • Sun, M., & F. R. Ganders. 1988. Mixed mating systems in Hawaiian Bidens. Evolution 42: 516–527. https://doi.org/10.1111/j.1558-5646.1988.tb04157.x

    Article  CAS  PubMed  Google Scholar 

  • Sun, M. & K. Ritland. 1998. Mating system of yellow starthistle (Centaurea solstitialis), a successful colonizer in North America. Heredity 80: 225–232.

    Article  Google Scholar 

  • Sun, M. & F. R. Ganders. 1990. Outcrossing rated and allozyme variation in rayed and rayless morphs of Bidens pilosa. Heredity 64: 139–143.

    Article  Google Scholar 

  • Sun, Y. & C. F. Vargas-Mendoza. 2017. Population structure, genetic diversity, and evolutionary history of Kleinia neriifolia (Asteraceae) on the Canary Islands. Frontiers in the Plant Sciences 8:1180. doi: https://doi.org/10.3389/fpls.2017.01180

    Article  Google Scholar 

  • Susanna A., M. Galbany-Casals, K. Romaschenko, L. Barres, J. Martin & N. Garcia-Jacas. 2011. Lessons from Plectocephalus (Compositae, Cardueae-Centaureinae): ITS disorientation in annuals and Beringian dispersal as revealed by molecular analyses. Annals of Botany 108: 263–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Susanna, A., T. Garnatje & N. Garcia-Jacas. 1999. Molecular phylogeny of Cheirolophus (Asteraceae: Cardueae—Centaureinae) based on ITS sequences of nuclear ribosomal DNA. Plant Systematics and Evolution 214: 147–160.

    Article  Google Scholar 

  • Taylor, A. P., P. Weigelt, C. König, G. Zotz & H. Kreft. 2019. Island disharmony revisited using orchids as a model group. New Phytologist 223: 597–606. doi: https://doi.org/10.1111/nph.15776

    Article  PubMed  Google Scholar 

  • Torices R, M. Méndez & J. M. Gómez. 2011. Where do monomorphic sexual systems fit in the evolution of dioecy? Insights from the largest family of angiosperms. New Phytologist 190: 234–248. https://doi.org/10.1111/j.1469-8137.2010.03609.x

    Article  PubMed  Google Scholar 

  • Torres, A. 1968. Revision of Jaegeria (Compositae-Heliantheae). Brittonia 20: 52–73.

    Article  Google Scholar 

  • Turner, B. L. 1988. Taxonomic study of Chrysanthellum (Asteraceae, Coreopsideae). Phytologia 64: 410-444.

    Article  Google Scholar 

  • Tye, A. 2010. The Galápagos endemic Darwiniothamnus alternifolius (Asteraceae, Astereae) transferred to Erigeron. Novon 20: 111–112.

    Article  Google Scholar 

  • Tye, A. & P. J.Díaz. 2022. Rediscovery of the Galapagos endemic Lecocarpus leptolobus (Asteraceae), its morphology, distribution and taxonomy relative to its congeners. Botanical Journal of the Linnean Society 200: 270-284. https://doi.org/10.1093/botlinnean/boac026

    Article  Google Scholar 

  • van Hengstum, T., S. Lachmuth, J. G. B. Oostermeijer, H. (J.) C. M. den Nijs, P. G. Meirmans & P. H. van Tienderen. 2012. Human-induced hybridization among congeneric endemic plants on Tenerife, Canary Islands. Plant Systematics and Evolution 298: 1119-1131.

  • Vargas, P., Y. Arjona , M. Nogales & R. H. Heleno. 2015. Long-distance dispersal to oceanic islands: success of plants with multiple diaspore specializations. AoB PLANTS 7: plv073; doi:https://doi.org/10.1093/aobpla/plv073

  • Vargas, P., R. Heleno, A. Traveset & M. Nogales. 2012. Colonization of the Galápagos Islands by plants with no specific syndromes for long-distance dispersal: a new perspective. Ecography 35: 33–43. https://doi.org/10.1111/j.1600-0587.2011.06980.x

    Article  ADS  Google Scholar 

  • Vasey, M. C. 1985. The specific status of Lasthenia maritima (Asteraceae), an endemic of the seabird breeding habitats. Madroño 32: 131–142.

    Google Scholar 

  • Venkatasamy, S., G. Khitto & S. Keeley. 2007. Leaky dioecy in Diospyros (Ebenaceae) endemic to the Island of Mauritius. Plant Ecology 189:139–146. DOI https://doi.org/10.1007/s11258-006-9171-y

    Article  Google Scholar 

  • Vitales, D., T. Garnatje, J. Pellicer, J. Vallès, A. Santos-Guerra and I. Sanmartín. 2014. The explosive radiation of Cheirolophus (Asteraceae, Cardueae) in Macaronesia. BMC Evolutionary Biology 14:118 http://www.biomedcentral.com/1471-2148/14/118

  • Vitales, D, C. Guerrero, T. Garnatje, M. M. Romeiras, A. Santos, F. Fernandes & J. Vallès. 2023. Parallel anagenetic patterns in endemic Artemisia species from three Macaronesian archipelagos. AoB PLANTS, 2023, 15, 1–13. https://doi.org/10.1093/aobpla/plad057

    Article  CAS  Google Scholar 

  • von Gaisberg, M. & G. Wagehnitz. 2002. Carduus baeocephalus subsp. microstigma Gaisberg & Wagenitz, a new subspecies from the Canary Islands (Cardueae, Carduinae) – a facultative autogamous descendant of Carduus baeocephalus Webb subsp. baeocephalus. Candollea 57: 271–282.

    Google Scholar 

  • Wagenius, S., H. H. Hangelbroek, C. E. Ridley & R. G. Shaw. 2010. Biparental inbreeding and interremnan mating in a perennial prairie plant: fitness consequences for progeny in their first eight years. Evolution 64: 761–771. doi:https://doi.org/10.1111/j.1558-5646.2009.00860.x

    Article  PubMed  Google Scholar 

  • Wagner, W. L. & D. R. Herbst. 1987. A new species of Remya (Asteraceae: Astereae) on Kaua'i and a review of the genus. Systematic Botany 12: 601–608. https://doi.org/10.2307/2418894

    Article  Google Scholar 

  • Wagner,W. L., D. R. Herbst & S. H. Sohmer. 1990. Manual of the flowering plants of Hawaii. University of Hawaii Press & Bishop Museum Press, Honolulu.

    Google Scholar 

  • Wahrmund, U., H. Heklau, M. Röser, A. Kästner, E. Vitek, F. Ehrendorfer & K. B. von Hagen. 2010. A molecular phylogeny reveals frequent changes of growth form in Carlina (Asteraceae). Taxon 59: 367–378.

    Article  Google Scholar 

  • Walter, G. M., R. J. Abbott, A. C. Brennann, J. R. Bridle, M. Chapman, J. Clark, D. Filtov, B. Nevado, D. Ortiz-Barrientos & S. J. Hiscock. 2020. Senecio as a model system for integrating studies of genotype, phenotype and fitness. New Phytologist 226: 326–344. doi: https://doi.org/10.1111/nph.16434

    Article  PubMed  Google Scholar 

  • Weissmann, J.A.& H. Schaefer 2017. The importance of generalist pollinator complexes for endangered island endemic plants. Arquipelago. Life and Marine Sciences 35: 23-40.

  • White, O. W., J. A. Reyes-Betancort, M. A. Chapman & M. A. Carine. 2020. Geographical isolation, habitat shifts and hybridisation in the diversification of the Macaronesian endemic genus Argyranthemum (Asteraceae) New Phytologist 228: 1953–1971. doi: https://doi.org/10.1111/nph.16980i

  • Whitehead, M. R., R. Lanfear, R. J. Mitchell & J. D. Karron. 2018. Plant mating systems often vary widely among populations. Frontiers in Ecology and Evolution 6:38. https://doi.org/10.3389/fevo.2018.00038

  • Wright, S. I., S. Kalisz & T. Slotte. 2013. Evolutionary consequences of self-fertilization in plants. Philosophical Transactions of the Royal Society London B, 280: 20130133. https://doi.org/10.1098/rspb.2013.0133

    Article  Google Scholar 

  • Young, A. G. & A. H. D. Brown. 1999. Paternal bottlenecks in fragmented populations of the grassland daisy Rutidosis leptorrhynchoides. Genetics Research 73: 111–117. DOI: https://doi.org/10.1017/S0016672398003668

    Article  Google Scholar 

  • Young, A. G. & M. Pickup. 2010. Low S-allele numbers limit mate availability, reduce seed set and skew fitness in small populations of a self-incompatible plant. Journal of Applied Ecology 47: 541–548. doi: https://doi.org/10.1111/j.1365-2664.2010.01798.x

    Article  Google Scholar 

  • Zohary, M. 1950. Evolultionary trcnds in the fruiting head of Compositae. Evolution 4: 103–109.

    Article  Google Scholar 

Download references

Acknowledgements

DJC and JKK were supported by The College of Liberal Arts and Sciences and the Department of Ecology and Evolutionary Biology at the University of Kansas for studies of island plants; GJA received multiple forms of support from the Department of Ecology and Evolutionary Biology at the Univ. of Connecticut for studies of the reproductive biology of plants from oceanic archipelagos; grants from NSF and NIH to JKK facilitated research on plant mating systems and paternity. We appreciate the constructive comments of two anonymous reviewers.

Attribution for figures: Gilbert Ortiz executed several figures. Unless otherwise indicated in figure captions, photos were supplied by the authors. We thank Jenny Archibald, David Eickhoff, John Game, Tod Stuessy and Pablo Vargas for kindly providing plant images.

Author information

Authors and Affiliations

Authors

Contributions

DJC had conceived the article, did initial literature searches, and produced initial draft of manuscript. GJA and JKK read subsequent drafts of the manuscript, suggested substantive additions and revisions, and provided additional literature references. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Daniel J. Crawford.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Appendix

Appendix

Table 1 Reproductive attributes of endemic and native Asteraceae from selected oceanic archipelagos, with relevant references and websites

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crawford, D.J., Kelly, J.K. & Anderson, G.J. Reproductive Biology of Asteraceae on Oceanic Islands. Bot. Rev. 90, 67–108 (2024). https://doi.org/10.1007/s12229-023-09295-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-023-09295-9

Keywords

Navigation