Skip to main content

Advertisement

Log in

Apomixis: A Foresight from Genetic Mechanisms to Molecular Perspectives

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Apomixis is considered to be a natural mode of clonal propogation from seed to seed, in which progeny serves as a replica of maternal genotype. The process evades creation of variation by circumventing sexual fusion and recombination, offering great advantage to fix heterosis or hybrid vigour in plants. As this would permit the conservation of complex favourable genotypes that are of agricultural value, it has immense potential in crop seed production. In order to accomplish this, a comprehensive knowledge on the genetic basis and the molecular mechanisms regulating different components of apomixis stands as a key prerequisite. So far, despite of the persistent interest and extensive research on apomixis, the underlying gene regulatory networks and their evolutionary origins are not well deciphered and still remain unclear. From the developmental perspective, apomixis is widely accepted to be controlled or deviated form of sexual reproduction and studies based on comparative analysis of genes or mutants regulating sexual and apomictic pathways revealed their resemblance across various plant species. Since apomixis is a complex, yet well regulated phenomenon that constantly requires action of specific genes during all developmental stages, the present review summarises recent advances in apomixis and compiles information on vital genes and mutants involved in regulating apomixis during various stages of development.

Graphical abstract

Graphical abstract: Brief illustration on mechanisms of apomictic and sexual life cycle in angiosperms. Apomixis avoids the process of meiosis and recombination offering  advantage over sexuals by conservation of heterosis or vigor for several generations, easy maintenance of superior genotypes and rapid production of homozygous lines. In sexuals owing to nuclear division and fertilization, fixation of heterosis cannot be achieved and maintenance/development of homozygous lines becomes intricate.*Based on the fertilization the ploidy of endosperm may vary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Agashe, B., C. K. Prasad & I. Siddiqi. 2002. Identification and analysis of DYAD: A gene required for meiotic chromosome organisation and female meiotic progression in Arabidopsis. Development 129: 3935-3943.

  • Albertini, E. & G. Barcaccia. 2007. Apomeiosis in Poa pratensis L. and Medicago sativa L. In: E. Horandl, U. Grossniklaus, T. Sharbel & P. van Dijk (eds.), Apomixis: evolution, mechanisms and perspectives. Regnum Vegetabile series, 147: 93-116. Gantner Verlag, Ruggell, Liechtenstein.

  • Albertini, E., A. Porceddu, F. Ferranti, L. Reale, G. Barcaccia, B. Romani & M. Falcinelli. 2001. Apospory and parthenogenesis may be uncoupled in Poa pratensis: A cytological investigation. Sexual Plant Reproduction 14: 213-217.

  • Albertini, E., G. Marconi, G. Barcaccia, L. Raggi & M. Falcinelli. 2004. Isolation of candidate genes for apomixis in Poa pratensis L. Plant Molecular Biology 56: 879-894.

  • Albertini, E., G. Marconi, L. Reale, G. Barcaccia, A. Porceddu, F. Ferranti & M. Falcinelli. 2005. SERK and APOSTART candidate genes for apomixis in Poa pratensis. Plant Physiology 138: 2185-2199.

  • Albrecht, C., E. Russinova, V. Hecht, E. Baaijens & S. de Vries. 2005. The Arabidopsis thaliana somatic embryogenesis receptor-like kinases 1 & 2 control male sporogenesis. The Plant Cell 17: 3337-3349.

  • Albrecht, C., E. Russinova, B. Kemmerling, M. Kwaaitaal & S. C. de Vries. 2008. Arabidopsis somatic embryogenesis receptor kinase proteins serve brassinosteroid-dependent and independent signalling pathways. Plant Physiology 148: 611-619.

  • Andreuzza, S., B. Nishal, A. Singh & I. Siddiqi. 2015. The chromatin protein DUET/MMD1 controls expression of the meiotic gene TDM1 during male meiosis in Arabidopsis. PLoS Genetics 11: e1005396.

  • Araujo, A. C. G., S. Mukhambetzhanov, M. T. Pozzobon, E. F. Santana & V. T. C. Carneiro. 2000. Female gametophyte development in apomictic and sexual Brachiaria brizantha (Poaceae). Revue de Cytologie et de Biologie Vegetales Le Botaniste 23: 13-27.

  • Armenta-Medina, A., E. Demesa-Arévalo, Vielle-Calzada & Jean-Philippe. 2011. Epigenetic control of cell speciation during female gametogenesis. Sexual Plant Reproduction 24: 137-147.

  • Asker, S. 1980. Gametophytic apomixis: elements and genetic regulation. Herditas 93: 277-293.

  • Asker, S. E. & L. Jerling. 1992. Apomixis in Plants. CRC Press, Boca Raton, Florida.

  • Baker, S. C., K. Robinson-Beers, J. M. Villanueva, J. C. Gaiser & C. S. Gasser. 1997. Interactions among genes regulating ovule development in Arabidopsis thaliana. Genetics 145: 1109-1124.

  • Balasubramanian, S. & K. Schneitz. 2000. NOZZLE regulates proximal-distal pattern formation, cell proliferation and early sporogenesis during ovule development in Arabidopsis thaliana. Development 127: 4227-4238.

  • Balasubramanian S. & K. Schneitz. 2002. NOZZLE links proximal-distal and adaxial-abaxial pattern formation during ovule development in Arabidopsis thaliana. Development 129: 4291-4300.

  • Barbadikar, K.M., Aglawe, S.B., Mangrauthia, S.K., Madhav, M.S. & S.P.J. Kumar. 2019. Genome editing: New breeding technologies in plants. OMICS-Based approaches in plant biotechnology, 245-285.

  • Barcaccia, G. & E. Albertini. 2013. Apomixis in plant reproduction: a novel perspective on an old dilemma. Plant Reproduction 26: 159-179.

  • Baroux, C., C. Spillane & U. Grossniklaus. 2002. Genomic imprinting during seed development. Advances in Genetics 46: 165-214.

  • Barrell, P. J. & U. Grossniklaus. 2005. Confocal microscopy of whole ovules for analysis of reproductive development: the ELONGATE1 mutant affects meiosis II. Plant Journal: for Cell and Molecular Biology 43: 309-320.

  • Bemer, M., M. Wolters-Arts, U. Grossniklaus & G. C. Angenent. 2008. The MADS domain protein DIANA acts together with AGAMOUS-LIKE80 to specify the central cell in Arabidopsis ovules. The Plant Cell 20: 2088-2101.

  • Bencivenga, S., S. Simonini, E. Benková & L. Colombo. 2012. The transcription factors BEL1 and SPL are required for cytokinin and auxin signaling during ovule development in Arabidopsis. The Plant Cell 24: 2886-2897.

  • Bicknell, R. A. 1997. Isolation of a diploid, apomictic plant of Hieracium aurantiacum. Sexual Plant Reproduction 10: 168-172.

  • Bicknell, R. A. & N. K. Borst. 1996. Isolation of reduced genotypes of Hieracium pilosella using anther culture. Plant Cell Tissue and Organ Culture 45: 37-41.

  • Bicknell, R. & A. Catanach. 2006. The Molecular biology of Apomixis. In: R.B. Jordan (ed.), Molecular biology and biotechnology of flowering. CAB International, Wallingford, UK, 2: 354-390.

  • Bicknell R. A. & A. M. Koltunow. 2004. Understanding apomixis: Recent advances and remaining conundrums. The Plant Cell 16: 228-245.

  • Bicknell, R. A., N. K. Borst & A. M. Koltunow. 2000. Monogenic inheritance of apomixis in two Hieracium species with distinct developmental mechanisms. Heredity 84: 228-237.

  • Birchler, J. A. 1993. Dosage analysis of maize endosperm development. Annual Review of Genetics 27: 181-204.

  • Bocher, T. W. 1951. Cytological and embryological studies in the amphiapomictic Arabis holboellii complex. Biologiske Skrifter Danske Videnskabernes Selskab. http://www.royalacademy.dk/Publications/High/78_B%C3%B6cher, Tyge W.pdf

  • Bohmert, K., I. Camus, C. Bellini, D. Bouchez, M. Caboche & C. Benning. 1998. AGO1 defines a novel locus of Arabidopsis controlling leaf development. The EMBO Journal 17: 170-180.

  • Boutilier, K., R. Offringa, K. Sharma, H. Kieft, T. Ouellet, L. Zhang, J. Hattori, C. Liu, A. A. van Lammeren, B. L. A. Miki, J. B. M. Custers & M. M. L. Campagne. 2002. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. The Plant Cell 14: 1739-1747.

  • Brukhin, V. 2017. Molecular and genetic regulation of apomixis. Russian Journal of Genetics 15: 1001-1024.

    Google Scholar 

  • Brukhin, V. & R. Baskar. 2019. A brief note on genes that trigger components of apomixis. Journal of Bioscience 44: 45.

    Article  Google Scholar 

  • Bui, L. T., D. Pandzic, C. E. Youngstrom, S. Wallace, E. E. Irish, P. Szövényi & C-L. Cheng. 2017. A fern AINTEGUMENTA gene mirrors BABY BOOM in promoting apogamy in Ceratopteris richardii. The Plant Journal 90: 122-132.

  • Canales, C., A. M. Bhatt, R. Scott & H. Dickinson. 2002. EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Current Biology: CB 12: 1718-1727.

    Article  CAS  PubMed  Google Scholar 

  • Carman, J. G. 1997. Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory and polyembryony. Biological Journal of the Linnean Society 61: 51-94.

    Article  Google Scholar 

  • Carneiro, V. T. C., D. M. A. Dusi & J. P. A. Ortiz. 2006. Apomixis: Occurrence, applications and improvements. Floriculture, Ornamental and Plant Biotechnology 1: 564-571.

    Google Scholar 

  • Catanach, A. S., S. K. Erasmuson, E. Podivinsky, B. R. Jordan & R. Bicknell. 2006. Deletion mapping of genetic regions associated with apomixis in Hieracium. Proceedings of National Academy of Sciences of the United States of America 103: 18650-18655.

    Article  CAS  Google Scholar 

  • Ceccato, L., S. Masiero, D. S. Roy, Bencivenga, I. Roig-Villanova, F. A. Ditengou, K. Palme, R. Simon & L. Colombo. 2013. Maternal control of PIN1 is required for female gametophyte development in Arabidopsis. PLoS ONE 8: e66148, 1-7.

    Google Scholar 

  • Chang, C., G. E. Schaller, S. E. Patterson, S. F. Kwok, E. M. Meyerowitz & A. B. Bleecker. 1992. The TMK1 gene from Arabidopsis codes for a protein with structural and biochemical characteristics of a receptor protein kinase. Cell 4: 1263-1271.

    CAS  Google Scholar 

  • Chantha, S. C., M. Gray-Mitsumune, J. Houde & D. P. Matton. 2010. The MIDASIN and NOTCHLESS genes are essential for female gametophyte development in Arabidopsis thaliana. Physiology and Molecular Biology of Plants 16: 3-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman, M. A. & J. M. Burke. 2006. Letting the gene out of the bottle: the population genetics of genetically modified crops. New Phytologist 170: 429-443.

  • Che, L., D. Tang, K. Wang, M. Wang, K. Zhu, H. Yu, M. Gu & Z. Chang. 2011. OsAM1 is required for leptotene-zygotene transition in rice. Cell Research 21: 654-665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, C. Y., D. E. Mathews, G. E. Schaller & J. J. Kieber. 2013. Cytokinin-dependent specification of the functional megaspore in the Arabidopsis female gametophyte. Plant Journal: for Cell and Molecular Biology 73: 929-940.

    Article  CAS  Google Scholar 

  • Choi, Y., M. Gehring, L. Johnson, M. Hannon, J. J. Harada, R. B. Goldberg, S. E. Jacobsen & R. L. Fischer. 2002. DEMETER, a DNA glycosylase domain protein, is required for endosperm imprinting and seed viability in Arabidopsis. Cell 110: 33-42.

    Article  CAS  PubMed  Google Scholar 

  • Christensen, C. A., E. J. King, J. R. Jordan & G. N. Drews. 1997. Megagametogenesis in Arabidopsis wild type and the gf mutant. Sexual Plant Reproduction 10: 49-64.

    Article  Google Scholar 

  • Christensen, C. A., S. Subramanian & G. N. Drews. 1998. Identification of gametophytic mutations affecting female gametophyte development in Arabidopsis. Develpomental Biology 202: 136-151.

    Article  CAS  Google Scholar 

  • Citterio, S., E. Albertini, S. Varotto, E. Feltrin, M. Soattin, G. Marconi, S. Sgorbati, M. Lucchin & G. Barcaccia. 2005. Alfalfa Mob 1-like genes are expressed in reproductive organs during meiosis and gametogenesis. Plant Molecular Biology 58: 789-807.

    Article  CAS  PubMed  Google Scholar 

  • Colcombet, J., A. Boisson-Dernier, R. Ros-Palau, C. E. Vera & J. I. Schroeder. 2005. Arabidopsis somatic embryogenesis receptor kinases 1 & 2 are essential for tapetum development and microspore maturation. The Plant Cell 17: 3350-3361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conner, J. A., M. Mookkan, H. Huo, K. Chae & P. Ozias-Akins. 2015. Induction of parthenogenesis by a BBM-like gene. Proceedings of the National Academy of Sciences of the United States of America 112: 11205-11210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corral, J. M., H. Vogel, O. M. Aliyu, G. Hensel, T. Thiel, J. Kumlehn & T. F. Sharbel. 2013. A conserved apomixis-specific polymorphism is correlated with exclusive exonuclease expression in premeiotic ovules of apomictic Boechera species. Plant Physiology 163: 1660-1672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couteau, F., F. Belziie, C. Hariaw, O. Grandjean, D. Vezon & M. Doutriaux. 1999. Random chromosome segregation without meiotic arrest in both male and female meiocytes of a dmc1 mutant of Arabidopsis. The Plant Cell 11: 1623-34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cromer, L., J. Heyman, S. Touati, H. Harashima, E. Araou, C. Girard, C. Horlow, K. Wassmann, A. Schnittger & L. De Veylder. 2012. OSD1 promotes meiotic progression via APC/C inhibition and forms a regulatory network with TDM and CYCA1;2/TAM. PLoS Genetics 8: e1002865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czermin, B., R. Melfi, D. Mc Cabe, V. Seitz, A. Imhof & V. Pirrotta. 2002. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites. Cell 111: 185-196.

    Article  CAS  PubMed  Google Scholar 

  • d’Erfurth, I., S. Jolivet, N. Froger, O. Catrice, M. Novatchkova & R. Mercier. 2009. Turning meiosis into mitosis. PLoS Biology 7: e1000124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • d’Erfurth, I., L. Cromer, S. Jolivet, C. Girard, C. Horlow, Y. Sun, J. P. C. To, L. E. Berchowitz, G. P. Copenhaver & R. Mercier. 2010. The CYCLIN-A CYCA1;2/TAM is required for the meiosis I to meiosis II transition and cooperates with OSD1 for the prophase to first meiotic division transition. PLoS Genetics 6: e1000989.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Muyt A., D. Vezon, G. Gendrot, J. L. Gallois, R. Stevens & M. Grelon. 2007. AtPRD1 is required for meiotic double strand break formation in Arabidopsis thaliana. Embo Journal 26: 4126-4137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • den Nijs, A. P. M. & G. E. Van Dijk. 1993. Apomixis. In: M. D. Hayward, N. O. Bosemark, I. Romagosa & M. Cerezo (eds.), Plant Breeding. Springer, Dordrecht 1: 229-242.

    Chapter  Google Scholar 

  • Drews, G. N. & A. M. Koltunow. 2011. The female gametophyte. Arabidopsis Book 9: e0155.

    Article  PubMed  PubMed Central  Google Scholar 

  • Drews, G. N., D. Lee & C. A. Christensen. 1998. Genetic analysis of female gametophyte development and function. Plant Cell 10: 5-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckdart, N. A. 2003. Patterns of gene expression in apomixis. Plant Cell 15: 1499-1501.

    Article  Google Scholar 

  • El Ouakfaoui, S., J. Schnell, A. Abdeen, A. Colville, H. Labbé, S. Han & B. Miki. 2010. Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Molecular Biology 74: 313-326.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fei, X., J. Shi, Y. Liu, J. Niu & A. Wei. 2019. The steps from sexual reproduction to apomixis. Planta 249: 1715-1730.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira, L. G., D. M. de Alencar Dusi, A. S. T. Irsigler, A. Gomes, M. A. Mendes, L. Colombo, de Campos & V. T. Carneiro. 2018. GID1 expression is associated with ovule development of sexual and apomictic plants. Plant Cell Reports 37: 293-306.

  • Fiaz, S., X. Wang, A. Younas, B. Alharthi, A. Riaz & H. Ali. 2021. Apomixis and strategies to induce apomixis to preserve hybrid vigor for multiple generations. GM Crops & Food 12: 57-70.

  • Finch, R. A. & M. D. Bennett. 1979. Action of triploid inducer (tri) on meiosis in barley (Hordeum vulgare L.). Heredity 43: 87-93.

    Article  Google Scholar 

  • Forsthoefel, N. R., K. A. Klag, S. R. Mc Nichol, C. E. Arnold, C. R. Vernon, W. W. Wood & D. M. Vernon. 2018. Arabidopsis PIRL6 is essential for male and female gametogenesis and is regulated by alternative splicing. Plant Physiology 178: 1154-1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fort, A., R. Tuteja, M. Braud, P. C. McKeown & C. Spillane. 2017. Parental-genome dosage effects on the transcriptome of F1 hybrid triploid embryos of Arabidopsis thaliana. The Plant Journal: for Cell and Molecular Biology 92:1044-1058.

    Article  CAS  Google Scholar 

  • Gaj M. D., S. Zhang, J. J. Harada & P. G. Lemaux. 2005. Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta 222: 977-988.

    Article  CAS  PubMed  Google Scholar 

  • Galla, G., S. Zenoni, G. Marconi, G. Marino, A. Botton, F. Pinosa, S. Citterio, B. Ruperti, K. Palme, E. Albertini, M. Pezzotti, M. Mau, T.F. Sharbel, N. De Storme, D. Geelen & G. Barcaccia. 2011. Sporophytic and gametophytic functions of the cell cycle-associated Mob1 gene in Arabidopsis thaliana L. Gene 484: 1-12.

    Article  CAS  PubMed  Google Scholar 

  • Galla, G., S. Zenoni, L. Avesani, L. Altschmied, P. Rizzo, T. F. Sharbel & G. Barcaccia. 2017. Pistil transcriptome analysis to disclose genes and gene products related to aposporous apomixis in Hypericum perforatum L. Frontiers in Plant Science 8: 79.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Aguilar, M., C. Michaud, O. Leblanc & D. Grimanelli. 2010. Inactivation of a DNA methylation pathway in maize reproductive organs results in apomixis-like phenotypes. The Plant Cell 22: 3249-3267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goiubovskaya, I. N. 1979. Genetic control of meiosis. International Review of Cytology 58: 247-290.

    Article  Google Scholar 

  • Grimanelli, D., M. Hernandez, E. Perotti & Y. Savidan. 1997. Dosage effects in the endosperm of the diplosporous apomictic Tripsacum (Poaceae). Sexual Plant Reproduction 10: 279-282.

    Article  Google Scholar 

  • Grimanelli, D., M. Garcia, E. Kaszas, E. Perotti & O. Leblanc. 2003. Heterochronic expression of sexual reproductive programs during apomictic development in Tripsacum. Genetics 165: 1521-1531.

    Article  PubMed  PubMed Central  Google Scholar 

  • Groß-Hardt, R., M. Lenhard & T. Laux. 2002. WUSCHEL signalling functions in interregional communication during Arabidopsis ovule development. Genes and Development 16: 1129-1138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Groß-Hardt, R., C. Kägi, N. Baumann, J. M. Moore, R. Baskar, W. B. Gagliano, G. Jurgens & U. Grossniklaus. 2007. LACHESIS Restricts Gametic Cell Fate in the Female Gametophyte of Arabidopsis. PLoS Biology 5: e47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grossniklaus, U. & K. Schneitz. 1998. The molecular and genetic basis of ovule and megagametophyte development. Seminars in Cell and Developmental Biology 9: 227-238.

    Article  CAS  PubMed  Google Scholar 

  • Grossniklaus, U., J. Vieliecaizada, M. Hoeppner & W. Gogiiono. 1998. Maternal control of embryogenesis by MEDEA, a Polycomb group gene in Arabidopsis. Science 280: 446-450.

    Article  CAS  PubMed  Google Scholar 

  • Hagberg, A. & G Hagberg. 1980. High frequency of spontaneous haploids in the progeny of an induced mutation in barley. Hereditas 93: 341-343.

    Article  Google Scholar 

  • Hagberg, G. & A. Hagberg. 1981. Haploidy initiator gene in barley. Barley genetics IV: proceedings of the Fourth International Barley Genetics Symposium, Edinburgh, Pp: 686-689.

  • Hand, M. L. & A. M. G. Koltunow. 2014. The genetic control of apomixis: asexual seed formation. Genetics 197: 441-450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanna, W., D. Roche & P. Ozias-Akins. 1998. Apomixis in crop improvement: traditional and molecular approaches. In: S. S. Virmani, E. A. Siddiq & K. Muralidharan (eds.), Pp. 283-296. Advances in Hybrid Rice Technology. Proceedings of the 3rd International Symposium on Hybrid Rice. International Rice Research Institute Press, Manila, Philippines.

  • Hao, L., X. Wei, J. Zhu, J. Shi, J. Liu, H. Gu, T. Tsuge & Q. Li-Jia. 2017. SNAIL1 is essential for female gametogenesis in Arabidopsis thaliana. Journal of Integrative Plant Biology 59: 629-641.

    Article  CAS  PubMed  Google Scholar 

  • Harscoet, E., B. Dubreucq, J. C. Palauqui & L. Lepiniec. 2010. NOF1 encodes an Arabidopsis protein involved in the control of rRNA expression. PLoS ONE 5: e12829.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hecht, V., J. P. Vielle-Calzada, M. V. Hartog, E. D. Schmidt, K. Boutilier, U. Grossniklaus & S. C. de Vries. 2001. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiology 127: 803-816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hehenberger, E., D. Kradolfer & C. Köhler. 2012. Endosperm cellularization defines an important developmental transition for embryo development. Development 139: 2031-2039.

    Article  CAS  PubMed  Google Scholar 

  • Henderson, S. T., S. D. Johnson, J. Eichmann & A. M. G. Koltunow. 2017. Genetic analyses of the inheritance and expressivity of autonomous endosperm formation in Hieracium with different modes of embryo sac and seed formation. Annals of Botany 119: 1001-1010.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hennig, L., P. Taranto, M. Walser, N. Schönrock & W. Gruissem. 2003. Arabidopsis MSI1 is required for epigenetic maintenance of reproductive development. Development 130: 2555-2565.

    Article  CAS  PubMed  Google Scholar 

  • Hermon, P., K. Srilunchang, J. Zou, D. Thomas & N. D. Olga. 2007. Activation of the imprinted polycomb group Fie1 gene in maize endosperm requires demethylation of the maternal allele. Plant Molecular Biology 64: 387-395.

    Article  CAS  PubMed  Google Scholar 

  • Hojsgaard, D. & E. Hörandl. 2019. The rise of apomixis in natural plant populations. Frontiers in Plant Science 10: 358.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holding, D. R. & P. S. Springer. 2002. The Arabidopsis gene PROLIFERA is required for proper cytokinesis during seed development. Planta 214: 373-382.

    Article  CAS  PubMed  Google Scholar 

  •  Hörandl, E. 2006. The complex causality of geographical parthenogenesis. New Phytologist 171: 525-538.

  • Horstman, A., M. Li, I. Heidmann, M. Weemen, B. Chen, J. M. Muino, G. C. Angenent & K. Boutilier. 2017. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiology 175: 848-857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, B. Q. & W. F. Sheridan. 1996. Embryo sac development in the maize indeterminate gametophyte1 mutant: Abnormal nuclear behaviour and defective microtubule organization. The Plant Cell 8: 1391-1407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, C. K., L. F. Huang, J. J. Huang, S. J. Wu, C. H. Yeh & C. A. Lu. 2010. A DEAD-box protein, AtRH36, is essential for female gametophyte development and is involved in rRNA biogenesis in Arabidopsis. Plant Cell Physiology 51: 694-706.

    Article  CAS  PubMed  Google Scholar 

  • Ingouff, M., P. E. Jullien & F. Berger. 2006. The female gametophyte and the endosperm control cell proliferation and differentiation of the seed coat in Arabidopsis. Plant Cell 18: 3491-3501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito, T., F. Wellmer, H. Yu, P. Das, N. Ito, J. L. Richmann & E. M. Meyerowitz. 2004. The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature 430: 356-360.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, S., T. M. Palmer & W. Lukowitz. 2011. The RWP-RK factor GROUNDED promotes embryonic polarity by facilitating YODA MAP kinase signaling. Current Biology:CB 21: 1268-1276.

    Article  CAS  PubMed  Google Scholar 

  • Ji, J., D. Tang, Y. Shen, Z. Xue, H. Wang, W. Shi, C. Zhang, G. Du, Y. Li & Z. Cheng. 2016. P31comet, a member of the synaptonemal complex, participates in meiotic DSB formation in rice. Proceedings of National Academy of Sciences of the United States of America 113: 10577-10582.

    Article  CAS  Google Scholar 

  • Jia, G., X. Liu, H. A. Owen & D. Zhao. 2008. Signaling of cell fate determination by the TPD1 small protein and EMS1 receptor kinase. Proceedings of National Academy of Sciences of the United States of America 105: 2220-2225.

    Article  CAS  Google Scholar 

  • Jia, G., Y. Fu & C. He. 2012. Reversible RNA adenosine methylation in biological regulation. Trends in Genetics 29: 108-115.

    Article  PubMed  CAS  Google Scholar 

  • Jullien, P. E., A. Katz, M. Oliva, N. Ohad & F. Berger. 2006a. Polycomb group complexes self-regulate imprinting of the polycomb group gene MEDEA in Arabidopsis. Current Biology:CB 16: 486-492.

    Article  CAS  PubMed  Google Scholar 

  • Jullien, P. E., T. Kinoshita, N. Ohad & F. Berger. 2006b. Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell 18: 1360-1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakimoto, T. 1996. CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274: 982-985.

    Article  CAS  PubMed  Google Scholar 

  • Kandemir, N. & I. Saygili. 2015. Apomixis: new horizons in plant breeding. Turkish Journal of Agriculture and Forestry 39: 549-556.

    Article  CAS  Google Scholar 

  • Kelliher, T., D. Starr, L. Richbourg, S. Chintamanani, B. Delzer, M. L. Nuccio, J. Green, Z. Chen, J. McCuiston & W. Wang. 2017. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542: 105-109.

    Article  CAS  PubMed  Google Scholar 

  • Kelliher, T., D. Starr, X. Su, G. Tang, Z. Chen, J. Carter, P. E. Wittich, S. Dong, J. Green, E. Burch, J. Mc Cuiston, G. Weining, S. Yuejin, S. Tim, R. James, J. B. Nic & Q. Qiudeng. 2019. One-step genome editing of elite crop germplasm during haploid induction. Nature Biotechnology 37: 287-292.

    Article  CAS  PubMed  Google Scholar 

  • Kermicle, J. 1969. Androgenesis conditioned by a mutation in maize. Science 116: 1422-1424.

    Article  Google Scholar 

  • Kermicle, J. 1971. Pleiotropic effects on seed develoment of the indeterminate gametophyte gene in maize. American Journal of Botany 58: 1-7.

    Article  Google Scholar 

  • Khan, Y., R. Choudhary, H. Tyagi & A. Singh. 2015. Apomixis: the molecular perspectives and its utilization in crop breeding. Journal of AgriSearch 2: 153-161.

    Google Scholar 

  • Kindiger, B. & S. Hamann. 1993. Generation of haploids in maize: A modification of the indeterminate gametophyte (ig) system. Crop Science 33: 342-344.

    Article  Google Scholar 

  • Koch, M. A. 2015. A new chromosome was born: Comparative chromosome painting in Boechera. Trends in Plant Science 20: 533-535.

    Article  CAS  PubMed  Google Scholar 

  • Kohler, C., L. Hennig, R. Bouveret, J. Gheyselinck, U. Grossniklaus & W. Gruissem. 2003. Arabidopsis MSI1 is a component of the MEA/FIE polycomb group complex and required for seed development. EMBO Journal 22: 4804-4814.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koltunow, A. M. 1993. Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 5: 1425-1437.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koltunow, A. M. & U. Grossniklaus. 2003. Apomixis: A developmental perspective. Annual Reviews of Plant Biology 54: 547-574.

    Article  CAS  Google Scholar 

  • Koltunow, A. M., R. A. Bicknell, & A. M. Chaudhury. 1995. Apomixis: Molecular strategies for the generation of genetically identical seeds without fertilization. Plant Physiology 108: 1345-1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koltunow, A. M., S. D. Johnson, J. C. M. Rodrigues, T. Okada, Y. Hu, T. Tsuchiya, S. Wilson, P. Fletcher, K. Ito, G. Suzuki, Y. Mukai, J. Fehrer & R.A. Bicknell. 2011. Sexual reproduction is the default mode in apomictic Hieracium subgenus Pilosella, in which two dominant loci function to enable apomixis. The Plant Journal: for Cell and Molecular Biology 66: 890-902.

    Article  CAS  Google Scholar 

  • Kotani, Y., S. T. Henderson, G. Suzuki, S. D. Johnson, T. Okada, H. Siddons, Y. Mukai & A. M. Koltunow. 2013. The LOSS OF APOMEIOSIS (LOA) locus in Hieracium praealtum can function independently of the associated large-scale repetitive chromosomal structure. The New Phytologist 201: 973-981.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S.P.J., Chintagunta, A.D., Reddy, Y.M., Rajjou, L., Kumar, G.V., Agarwal, D.K., Prasad, S.R. & J. Simal-Gandara. 2021. Implications of reactive oxygen and nitrogen species in seed physiology for sustainable crop productivity under changing climate conditions. Current Plant Biology, 100197.

  • Kwee, H. S. & V. Sundaresan. 2003. The NOMEGA gene required for female gametophyte development encodes the putative APC6/CDC16 component of the anaphase promoting complex in Arabidopsis. The Plant Journal: for Cellular and Molecular Biology 36: 853-866.

    Article  CAS  Google Scholar 

  • Leblanc, O., D. Grimanelli, D. Gonzalez de Leon & Y. Savidan. 1995. Detection of the apomictic mode of reproduction in maize-Tripsacum hybrids using maize RFLP markers. Theoretical and Applied Genetics 90: 1198-1203.

    Article  CAS  PubMed  Google Scholar 

  • Leroy, O., L. Hennig, H. Breuninger, T. Laux & C. Kohler. 2007. Polycomb group proteins function in the female gametophyte to determine seed development in plants. Development 134: 3639-3648.

    Article  CAS  PubMed  Google Scholar 

  • Lieber, D., J. Lora, S. Schrempp, M. Lenhard & T. Laux. 2011. Arabidopsis WIH1 and WIH2 genes act in the transition from somatic to reproductive cell fate. Current Biology: CB 21:1009-1017.

    Article  CAS  PubMed  Google Scholar 

  • Lin, B. 1978. Structural modifications of the female gametophyte associated with the indeterminate gametophyte (ig) mutant in maize. Canadian Journal of Genetics and Cytology 20: 249-257.

    Article  Google Scholar 

  • Lin, B. 1981. Megagametogenetic alterations associated with the indeterminate gametophyte (ig) mutation in maize. Revista brasileira de biologia 41: 557-563.

    Google Scholar 

  • Lin, B. T. 1984. Ploidy barrier to endosperm development in maize. Genetics 107: 103-115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, M., D. Q. Shi, L. Yuan, J. Liu & W. C. Yang. 2010. SLOW WALKER3, encoding a putative DEAD-box RNA helicase, is essential for female gametogenesis in Arabidopsis. Journal of Integrative Plant Biology 52: 817-828.

    Article  CAS  PubMed  Google Scholar 

  • Luo, M., P. Bilodeau, E. S. Dennis, W. J. Peacock & A. Chaudhury. 2000. Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proceedings of National Academy of Sciences of the United States of America 97: 10637-10642.

    Article  CAS  Google Scholar 

  • Luo, M., D. Platten, A. Chaudhury, W. J. Peacock & E. S. Dennis. 2009. Expression, imprinting and evolution of rice homologs of the polycomb group genes. Molecular Plant Biology 2: 711-723.

    CAS  Google Scholar 

  • Luo, M., J. M. Taylor, A. Spriggs, H. Zhang, X. Wu, R. Cott, S. Mohan & A. Koltunow. 2011. A genome-wide survey of imprinted genes in rice seeds reveals imprinting primarily occurs in the endosperm. PLoS Genetics 7: e1002125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malecka, J. 1973. Problems of the mode of reproduction in microspecies of Taraxacum section Palustria Dahlstedt. Acta Biologica Cracoviensia Series Botanica 16: 37-84.

    Google Scholar 

  • Mancini, M., H. Permingeat, C. Colono, L. Siena, F. Pupilli, C. Azzaro, D. M. de Alencar Dusi, de Campos, V. T. Carneiro, M. Podio & J. G. Seijo. 2018. The MAP3K-coding QUI-GON JINN (QGJ) gene is essential to the formation of unreduced embryo sacs in Paspalum. Frontiers in Plant Science 9: 1547.

  • Marconi, G., D. Aiello, B. Kindiger, L. Storchi, A. Marrone, L. Reale, N. Terzaroli & E. Albertini. 2020. The role of APOSTART in switching between sexuality and apomixis in Poa pratensis. Genes 11: 941.

    Article  CAS  PubMed Central  Google Scholar 

  • Marimuthu, M. P. A., S. Jolivet, M. Ravi, L. Pereira, J. N. Davda, L. Cromer, L. Wang, F. Nogue, S. W. L. Chan & I. Siddiqui. 2011. Synthetic clonal reproduction through seeds. Science 331: 876.

    Article  CAS  PubMed  Google Scholar 

  • Matzk, F., A. Meister, R. Brutovska & I. Schubert. 2001. Reconstruction of reproductive diversity in Hypericum perforatum L. opens novel strategies to manage apomixis. Plant Journal 26: 275-282.

    Article  CAS  Google Scholar 

  • Matzk, F., S. Prodanovic, H. Bäumlein & I. Schubert. 2005. The inheritance of apomixis in Poa pratensis confirms a five locus model with differences in gene expressivity and penetrance. The Plant Cell 17: 13-24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mau, M., J. M. Corral, H. Vogel, M. Melzer, J. Fuchs, M. Kuhlmann, N. de Storme, D. Geelen & T. F. Sharbel. 2013. The conserved chimeric transcript UPGRADE2 is associated with unreduced pollen formation and is exclusively found in apomictic Boechera species. Plant Physiology 163: 1640-1659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mau, M., J. T. Lovell, J. M. Corral, C. Kiefer, M. A. Koch, O. M. Aliyu & T. F. Sharbel. 2015. Hybrid apomicts trapped in the ecological niches of their sexual ancestors. Proceedings of National Academy of Sciences of the United States of America 112: E2357-E2365.

    CAS  Google Scholar 

  • Mercier, R., D. Vezon, E. Bullier, J. C. Motamayor, A. Sellier, F. Lefèvre, G. Pelletier & C. Horlow. 2001. SWITCH1 (SWI1): A novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis. Genes and Development 15: 1859-1871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercier, R., S. J. Armstrong, C. Horlow, N. P. Kackson, C. A. Makaroff, D. Vezon, G. Pelletier, G. H. Jones & F. C. H. Franklin. 2003. The meiotic protein SWI1 is required for axial element formation and recombination initiation in Arabidopsis. Development 130: 3309-3318.

    Article  CAS  PubMed  Google Scholar 

  • Miao, C., D. Tang, H. Zhang, M. Wang, Y. Li, S. Tang, H. Yu, M. Gu & Z. Cheng. 2013. Central region component1, a novel synaptonemal complex component, is essential for meiotic recombination initiation in rice. Plant Cell 25: 2998-3009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mieulet, D., S. Jolivet, M. Rivard, L. Cromer, A. Vernet, P. Mayonove, L. Pereira, G. Droc, B. Courtois & E. Guiderdoni. 2016. Turning rice meiosis into mitosis. Cell Research 26: 1242-1254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mogensen, H. L. 1982. Double fertilization in barley and the evtological explanation for haploid embryo formation, embryoless caryopses, and ovule abortion. Carlsberg Research Communications 47: 313-354.

    Article  Google Scholar 

  • Mogie, M. 1992. Evolution of Asexual Reproduction in Plants. Springer, Netherlands.

    Google Scholar 

  • Moore, J. M., J. P. V. Calzada, W. Gagliano & U. Grossniklaus. 1997. Genetic characterization of hadad, a mutant disrupting female gametogenesis in Arabidopsis thaliana. Cold Spring Harbor Symposia on Quantitative Biology 62: 35-47.

    Article  CAS  PubMed  Google Scholar 

  • Morcillo, F., A. Gallard, M. Pillot, S. Jouannic, F. Aberlenc-Bertossi, M. Collin, J. L. Verdeil & J. W. Tregear. 2007. EgAP2-1, an AINTEGUMENTA-like (AIL) gene expressed in meristematic and proliferating tissues of embryos in oil palm. Planta 226: 1353-1362.

    Article  CAS  PubMed  Google Scholar 

  • Muller, J., C. M. Hart, N. J. Francis, M. L. Vargas, B. Wild, E. L. Miller, M. B. O’Connor, R. E. Kingston & J. A. Simon. 2002. Histone methyltransferase activity of a Drosophila polycomb group repressor complex. Cell 111: 197-208.

    Article  CAS  PubMed  Google Scholar 

  • Naumova, T. N., J. vander Laak, Osadtchiy, J., F. Matzk, A. Kravtchenko, J. Bergervoet, K. S. Ramulu & K. Boutilier. 2001. Reproductive development in apomictic populations of Arabis holboellii (Brassicaceae). Sexual Plant Reproduction 14:195-200.

  • Nelson, O. E., J. R. Gerald & B. Clary. 1952. Genetic control of semi-sterility in maize: An inbred with pollen semi-sterility and ovule semi-sterility caused by different genes. Journal of Heredity 43: 205-210.

    Article  Google Scholar 

  • Ngo, Q. A., J. M. Moore, R. Baskar, U. Grossniklaus & V. Sundaresan. 2007. Arabidopsis GLAUCE promotes fertilization-independent endosperm development and expression of paternally inherited alleles. Development 134: 4107-4117.

    Article  CAS  PubMed  Google Scholar 

  • Nonomura, K. I., K. Miyoshi, M. Eiguchi, T. Suzuki, A. Miyao, H. Hirochika & N. Kurata. 2003. The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. The Plant Cell 15: 1728-1739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nonomura, K. I., M. Akane, N. Mutsuko, E. Mitsugu, M. Akio, H. Hirohiko & K. Nori. 2007. A germ cell-specific gene of the ARGONAUTE family is essential for the progression of pre-meiotic mitosis and meiosis during sporogenesis in rice. The Plant Cell 19: 2583-2594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noyes, R. D. 2007. Apomixis in the Asteraceae: Diamonds in the rough. Functional Plant Science and Biotechnology 1: 207-222.

    Google Scholar 

  • Noyes, R. D. & L. H. Rieseberg. 2000. Two independent loci control agamospermy (apomixis) in the triploid flowering plant Erigeron annuus. Genetics 155: 379-390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa, D., S. D. Johnson, S. T. Henderson & A. M. Koltunow. 2013. Plant Reproduction 26: 113-123.

    Article  PubMed  Google Scholar 

  • Ohad, N., L. Margossian, Y. C. Hsu, C. Williams, P. Repetti & R. L. Fischer. 1996. A mutation that allows endosperm development without fertilization. Proceedings of National Academy of Sciences of the United States of America 93: 5319-5324.

    Article  CAS  Google Scholar 

  • Ohad, N., R. Yadegari, L. Margossian, M. Hannon & D. Michaeli, J. J. Haradi, R. B. Goldberg & R. L. Fischer. 1999. Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. The Plant Cell 11: 407-416.

  • Olmedo-Monfil, V., N. Durán-Figueroa, M. Arteaga-Vázquez, E. Demesa-Arévalo, D. Autran, D. Grimanelli, R. K. Slotkin, R. A. Martienssen, J. P. Vielle- Calzada. 2010. Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464: 628-632.

  • Ozias-Akins, P. 2006. Apomixis: Developmental characteristics and genetics. Critical Reviews in Plant Sciences. 25: 199-214.

    Article  Google Scholar 

  • Ozias-Akins P. & P. J. Van Dijk. 2007. Mendelian genetics of apomixis in plants. Annual Review of Genetics 41: 509-537.

    Article  CAS  PubMed  Google Scholar 

  • Pagnussat, G. C., H. Yu & V. Sundaresan. 2007. Cell-fate switch of synergid to egg cell in Arabidopsis eostre mutant embryo sacs arises from misexpression of the BEL1-Like homeodomain gene BLH1. The Plant Cell 19: 3578-3592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panoli, A., M. V. Martin, M. Alandete-Saez, M. Simon, C. Neff, R. Swarup, A. Bellido, L. Yuan, G. C. Pagnussat & V. Sundaresan. 2015. Auxin import and local auxin biosynthesis are required for mitotic divisions, cell expansion and cell specification during female gametophyte development in Arabidopsis thaliana. PLoS ONE 10: e0126164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pawlowski, W. P., M. J. Sheehan & A. Ronceret. 2007. In the beginning: The initiation of meiosis. BioEssays 29: 511-514.

    Article  CAS  PubMed  Google Scholar 

  • Pawlowski, W. P., C. J. Wang, I. N. Golubovskaya, J. M. Szymaniak, L. Shi, O. Hamant, T. Zhu, L. Harper, W. F. Sheridan & W. Z. Cande. 2009. Maize AMEIOTIC1 is essential for multiple early meiotic processes and likely required for the initiation of meiosis. Proceedings of National Academy of Sciences of the United States of America 106: 3603-3608.

    Article  CAS  Google Scholar 

  • Peel, M. D., J. G. Carman & O. Leblanc. 1997. Megasporocyte callose in apomictic buffelgrass, Kentucky bluegrass, Pennisetum Squamulatum Fresen, Tripsacum L., and weeping lovegrass. Crop Science 37: 724-732.

    Article  Google Scholar 

  • Pellino, M., D. Hojsgaard, E. Hörandl & T. F. Sharbel. 2020. Chasing the apomictic factors in the Ranunculus auricomus complex: Exploring gene expression patterns in microdissected sexual and apomictic ovules. Genes 11: 728.

    Article  CAS  PubMed Central  Google Scholar 

  • Pischke M. S., L. G. Jones, D. Otsuga, D. E. Fernandez, G. N. Drews & M. R. Sussman. 2002. An Arabidopsis histidine kinase is essential for megagametogenesis. Proceedings of National Academy of Sciences of the United States of America 99: 15800-15805.

    Article  CAS  Google Scholar 

  • Podio, M., S. A. Felitti, L. A. Siena, L. Delgado, M. Mancini, J. G. Seijo, A. M. Gonzalez, S. C. Pessino & J. P. Ortiz. 2014. Characterization and expression analysis of SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) genes in sexual and apomictic Paspalum notatum. Plant Molecular Biology 84: 479-495.

    Article  CAS  PubMed  Google Scholar 

  • Porceddu, A., E. Albertini, G. Barcaccia, E. Falistocco & M. Falcinelli. 2002. Linkage mapping in apomictic and sexual Kentucky bluegrass (Poa pratensis L.) genotypes using a two-way pseudo test cross strategy based on AFLP and SAMPL markers. Theoretical and Applied Genetics 104: 273-280.

    Article  CAS  PubMed  Google Scholar 

  • Pupilli, F. & G. Barcaccia. 2012. Cloning plants by seeds: Inheritance models and candidate genes to increase fundamental knowledge for engineering apomixis in sexual crops. Journal of Biotechnology 159: 291-311.

    Article  CAS  PubMed  Google Scholar 

  • Qin, Y., L. Zhao, M. Skaggs, S. Andreuzza, T. Tsukamoto, A. Panoli, N. Wallace, Kirsten, S. Smith, I. Siddiqi, Z. Yang, R. Yadegari & R. Palanivelu. 2014. ACTIN-RELATED PROTEIN6 regulates female meiosis by modulating meiotic gene expression in Arabidopsis. The Plant cell 26: 1612-1628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu, Y. L., R. Liu, C. Xie, S. Russell & H. Tian. 2008. Calcium changes during megasporogenesis and megaspore degeneration in lettuce (Lactuca sativa L.) Sexual Plant Reproduction 2: 197-204.

  • Qiu, Y., S. L. Liu & K. L. Adams. 2017. Concerted divergence after gene duplication in polycomb repressive complexes. Plant Physiology 174: 1192-1204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quarin, C. 1999. Effect of pollen source and pollen ploidy on endosperm formation and seed set in pseudogamous apomictic Paspalum notatum. Sexual Plant Reproduction 11: 331-335.

    Article  Google Scholar 

  • Ravi, R., M. P. A. Marimuthu & I. Siddiqi. 2008. Gamete formation without meiosis in Arabidopsis. Nature 451: 1121-1124.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, T. V., J. Kaur, B. Agashe, V. Sundaresan & I. Siddiqi. 2003. The DUET gene is necessary for chromosome organization and progression during male meiosis in Arabidopsis and encodes a PHD finger protein. Development 130: 5975-5987.

    Article  CAS  PubMed  Google Scholar 

  • Redei, G. P. 1965. Non-mendelian megagametogenesis in Arabidopsis. Genetics 51: 857-872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards, A. J. 1997. Plant Breeding Systems, 2nd edition. Chapman and Hall, London.

    Book  Google Scholar 

  • Rodrigues, J. C., M. R. Tucker, S. D. Johnson, M. Hrmova & A. M. Koltunow. 2008. Sexual and apomictic seed formation in Hhieracium requires the plant Polycomb-group gene FERTILIZATION INDEPENDENT ENDOSPERM. The Plant Cell 20: 2372-2386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues, J. C., M. Luo, F. Berger & A. M. Koltunow. 2010. Polycomb group gene function in sexual and asexual seed development in angiosperms. Sexual Plant Reproduction 23: 123-133.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Leal, D. & J. P. Vielle-Calzada. 2012. Regulation of apomixis: learning from sexual experience. Current Opinion in Plant Biology 15: 1-7.

    Article  Google Scholar 

  • Rojek, J., M. Kapusta, M. Kozieradzka-Kiszkurno, D. Majcher, M. Górniak, E. Sliwinska & J. Bohdanowicz. 2018. Establishing the cell biology of apomictic reproduction in diploid Boechera stricta (Brassicaceae). Annals of Botany 122: 513-539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sargant, E. 1900. Recent work on the results of fertilization angiosperms. Annals of Botany 14: 689-712.

    Article  Google Scholar 

  • Savidan, Y. 1980. Chromosomal and embryological analyses in sexual x apomictic hybrids of Panicum maximum Jacq. Theoretical and Applied Genetics 58: 153-156.

    Article  CAS  PubMed  Google Scholar 

  • Savidan, Y. 1981. Genetics and utilization of apomixis for the improvement of Guinea grass (Pannicum maximum). In: Proceedings of the XIV International Grass Congress, Lexington, Kentucky, USA, Pp 182-184.

    Google Scholar 

  • Savidan, Y. 2000. Apomixis: Genetics and breeding. Plant Breeding Reviews 18: 13-85.

    CAS  Google Scholar 

  • Schallau, A., F. Arzenton, A. J. Johnston, U. Hähnel, D. Koszegi, F. R. Blattner, L. Altschmeid, G. Haberer, G. Barcaccia & H. Baumlein. 2010. Identification and genetic analysis of the APOSPORY locus in Hypericum perforatum L. The Plant Journal: for Cell and Molecular Biology 62: 773-784.

    Article  CAS  Google Scholar 

  • Schiefthaler, U., S. Balasubramanian, P. Sieber, D. Chevalier, E. Wisman & K. Schneitz. 1999. Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 96: 11664-11669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt, A. 2020. Controlling apomixis: Shared features and distinct characteristics of gene regulation. Genes 11: 329.

    Article  CAS  PubMed Central  Google Scholar 

  • Schmidt, E. D., F. Guzzo, M. A. Toonen & S. C. de Vries. 1997. A leucine rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124: 2049-2062.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, A., S. E. Wuest, K. Vijverberg, C. Baroux, D. Kleen,. & U. Grossniklaus. 2011. Transcriptome analysis of the Arabidopsis megaspore mother cell uncovers the importance of RNA helicases for plant germline development. PLoS Biology 9: e1001155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt, A., M. W. Schmid, U. C. Klostermeier, W. Qi, D. Guthörl, C. Sailer, M. Waller, P. Rosenstiel & U. Grossniklaus. 2014. Apomictic and sexual germline development differ with respect to cell cycle, transcriptional, hormonal and epigenetic regulation. PLoS Genetics 10: e1004476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmidt, A., M. W. Schmid & U. Grossniklaus. 2015. Plant germline formation: common concepts and developmental flexibility in sexual and asexual reproduction. Development 142: 229-241.

    Article  CAS  PubMed  Google Scholar 

  • Schneitz, K., M. Hulskamp, S. D. Kopczak & R. E. Pruitt. 1997. Dissection of sexual organ ontogenesis: A genetic analysis of ovule development in Arabidopsis thaliana. Development 124: 1367-1376.

    Article  CAS  PubMed  Google Scholar 

  • Schoof, H., M. Lenhard, A. Haecker, K. F. X. Mayer, G. Jürgens & T. Laux. 2000. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100: 635-644.

    Article  CAS  PubMed  Google Scholar 

  • Schruff, M. C., M. Spielman, S. Tiwari, S. Adams, N. Fenby & R. J. Scott. 2006. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133: 251-261.

    Article  CAS  PubMed  Google Scholar 

  • Shah, J. N., O. Kirioukhova, P. Pawar, M. Tayyab, J. L. Mateo & A. J. Johnston. 2016. Depletion of key meiotic genes and transcriptome-wide abiotic stress reprogramming mark early preparatory events ahead of apomeiotic transition. Frontiers in Plant Science 7: 1539.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharbel, T. F., M. L. Voigt, J. M. Corral, T. Thiel, A. Varshney, J. Kumlehn, H. Vogel & B. Rotter. 2009. Molecular signatures of apomictic and sexual ovules in the Boechera holboellii complex. The Plant Journal: for Cell and Molecular Biology 58: 870-882.

    Article  CAS  Google Scholar 

  • Sharbel, T. F., M. L. Voigt, J. M. Corral, G. Galla, J. Kumlehn, C. Klukas & B. Rotter. 2010. Apomictic and sexual ovules of Boechera display heterochronic global gene expression patterns. The Plant Cell 22: 655-671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheridan, W. F., N. A. Avalkina, I. I. Shamrov, T. V. Batygina & I. N. Golubovskaya. 1996. The mac1 gene: controlling the commitment to the meiotic pathway in maize. Genetics 143: 1009-1020.

    Article  Google Scholar 

  • Shi, D. Q., J. Liu, Y. H. Xiang, D. Ye, V. Sundaresan & W. C. Yang. 2005. SLOW WALKER1, essential for gametogenesis in Arabidopsis, encodes a WD40 protein involved in 18S ribosomal RNA biogenesis. The Plant Cell 17: 2340-2354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqi, I., G. Ganesh, U. Grossniklaus & V. Subbiah. 2000. The dyad gene is required for progression through female meiosis in Arabidopsis. Development 127: 197-207.

    Article  CAS  PubMed  Google Scholar 

  • Sieber, P., J. Gheyselinck, R. Gross-Hardt, T. Laux, U. Grossniklaus & K. Schneitz. 2004a. Pattern formation during early ovule development in Arabidopsis thaliana. Developmental Biology 273: 321-334.

    Article  CAS  PubMed  Google Scholar 

  • Sieber, P., M. Petrascheck, A. Barberis & K. Schneitz. 2004b. Organ polarity in Arabidopsis. NOZZLE physically interacts with members of the YABBY family. Plant Physiology 135: 2172-2185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siena, L. A., J. P. A Ortiz, O. Calderini, F. Paolocci, M. E. Cáceres, P. Kaushal, S. Grisan, S. C. Pessino & F. Pupilli. 2016. An apomixis-linked ORC3-like pseudogene is associated with silencing of its functional homolog in apomictic Paspalum simplex. Journal of Experimental Botany 67: 1965-1978.

  • Singh, M., S. Goel, R. B. Meeley, C. Dantec, H. Parrinello, C. Michaud, O. Leblanc & D. Grimanelli. 2011. Production of viable gametes without meiosis in maize deficient for an ARGONAUTE protein. The Plant Cell 23: 443-458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singleton, W. R. & P. C. Mangelsdorf. 1940. Gametic lethals on the fourth chromosome of maize. Genetics 25: 366-390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skinner, D. J., S. C. Baker, R. J. Meister, J. Broadhvest, K. Schneitz & C. S. Gasser. 2001. The Arabidopsis HUELLENLOS gene, which is essential for normal ovule development encodes a mitochondrial ribosomal protein. The Plant Cell 13: 2719-2730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spillane, C., K. J. Schmid, S. Laoueille-Duprat, S. Pien, J. M. Escobar-Restrepo, C. Baroux, V. Gagliardini, D. R. Page, K. H. Wolfe & U. Grossniklaus. 2007. Positive darwinian selection at the imprinted MEDEA locus in plants. Nature 448: 349-352.

    Article  CAS  PubMed  Google Scholar 

  • Springer, P. S., W. R. Mc Combie, V. Sundaresan & R. A. Martienssen. 1995. Gene trap tagging of PROLIFERA, an essential MCM2-3-5-like gene in Arabidopsis. Science 268: 877-880.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan, C., Z. Liu, I. Heidmann, E. N. J. Supena, H. Fukuoka, R. Joosen, J. Lambalk, G. Angenent, R. Scorza, J. B. M. Custers & K. Boutilier. 2007. Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.). Planta 225: 341-351.

    Article  CAS  PubMed  Google Scholar 

  • Tang, Y., Z. N. Yin, Y. J. Zeng, Q. X. Zhang, L. Q. Chen, Y. He, P. L. Lu, D. Ye & X. Q. Zhang. 2017. MTOPVIB interacts with AtPRD1 and plays important roles in formation of meiotic DNA double-strand breaks in Arabidopsis. Scientific Reports 7: 10007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taskin, K. M., A. Ozbilen, F. Sezer, K. Hurkan & S. Guneş. 2017. Structure and expression of DNA methyltransferase genes from apomictic and sexual Boechera species. Computational Biology and Chemistry 67: 15-21.

    Article  CAS  PubMed  Google Scholar 

  • Tiwari, S., M. Spielman, R. Schulz, R. J. Oakey, G. Kelsey, A. Salazar, K. Zhang, R. Pennell & R. J. Scott. 2010. Transcriptional profiles underlying parent-of-origin effects in seeds of Arabidopsis thaliana. BMC Plant Biology 10: 72: 2-22.

    Google Scholar 

  • Tucker, M. R. & A. M. G. Koltunow. 2009. Sexual and asexual (apomictic) seed development in flowering plants: molecular, morphological and evolutionary relationships. Functional Plant Biology 36: 490-504.

    Article  PubMed  Google Scholar 

  • Tucker, M. R., T. Okada, Y. Hu, A. Scholefield, J. M. Taylor & A. M. Koltunow. 2012. Somatic small RNA pathways promote the mitotic events of megagametogenesis during female reproductive development in Arabidopsis. Development 139:1399-1404.

    Article  CAS  PubMed  Google Scholar 

  • Van Dijk, P. J., C. R. Op den & S. E. Schauer. 2020. Genetic dissection of apomixis in dandelions identifies a dominant parthenogenesis locus and highlights the complexity of autonomous endosperm formation. Genes 11: 961.

  • Van Dijk, P. J., I. C. Q. Tas, M. Falque & T. Barx-Schotman. 1999. Crosses between sexual and apomictic dandelions (Taraxacum) II. The breakdown of apomixis. Heredity 83: 715-721.

    Article  PubMed  Google Scholar 

  • Vijverberg, K., R. G. M. Vander Hulst, P. Lindhout & P. J. van Dijk. 2004. A genetic linkage map of the diplosporous chromosomal region in Taraxacum officinale (common dandelion. Asteraceae). Theoretical and Applied Genetics 108: 725-732.

    Article  CAS  PubMed  Google Scholar 

  • Vijverberg, K., P. Ozias-Akins & M. E. Schranz. 2019. Identifying and engineering genes for parthenogenesis in plants. Frontiers in Plant Science 10: 128.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vivian-Smith A., M. Luo, A. Chaudhury & A. Koltunow. 2001. Fruit development is actively restricted in the absence of fertilization in Arabidopsis. Development 128: 2321-2331.

    Article  CAS  PubMed  Google Scholar 

  • Voigt, P. W. & B. L. Burson. 1983. Breeding of apomictic Eragrostis curvula. In: Lexington, J. A. Smith & V. W. Hayes (Eds.), Pp. 160-163, Proceedings of the 14th International Grassland Congress, Westview Press, Boulder, USA.

  • Waki, T., T. Hiki, R. Watanabe, T. Hashimoto & K. Nakajima. 2011. The Arabidopsis RWP-RK protein RKD4 triggers gene expression and pattern formation in early embryogenesis. Current Biology: CB 21: 1277-1281.

    Article  CAS  PubMed  Google Scholar 

  • Wang, K. 2020. Fixation of hybrid vigor in rice: Synthetic apomixis generated by genome editing. aBiotech 1: 15-20

  • Wang, D., M. D. Tyson, S. S. Jackson & R. Yadegari. 2006. Partially redundant functions of two SET-domain polycomb-group proteins in controlling initiation of seed development in Arabidopsis. Proceedings of National Academy of Sciences of the United States of America 103: 13244-13249.

    Article  CAS  Google Scholar 

  • Wang, C. J., G. L. Nan, T. Kelliher, L. Timofejeva, V. Vernoud, I. N. Golubovskaya, L., Harper, R. Egger, V. Walbot & W. Z. Cande. 2012. Maize multiple archesporial cells 1 (mac1), an ortholog of rice TDL1A, modulates cell proliferation and identity in early anther development. Development 139: 2594-2603.

  • Wang, J., B. Niu, J. Huang, H. Wang, X. Yang, A. Dong, C. Makaroff, H. Ma & Y. Wang. 2016. The PHD finger protein MMD1/DUET ensures the progression of male meiotic chromosome condensation and directly regulates the expression of the condensin gene CAP-D3. The Plant Cell 28: 1894-1909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Y. Xu, S. Zhang, L. Cao, Y. Huang, J. Cheng, G. Wu, S. Tian, C. Chen, Y. Liu, H. Yu, X. Yang, H. Lan, N. Wang, L. Wang, J. Xu, X. Jiang, Z. Xie, M. Tan, R. M. Larkin, L. L. Chen, B. G. Ma, Y. Ruan, X. Deng & Q. Xu. 2017. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nature Genetics 49: 765-772.

    Article  CAS  PubMed  Google Scholar 

  • Wang, C., Q. Liu, Y. Shen, Y. Hua, J. Wang, J. Lin, M. Wu, T. Sun, Z. Cheng & R. Mercier. 2019. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nature Biotechnology 37: 283-286.

    Article  CAS  PubMed  Google Scholar 

  • Wang, B., L. Zhu, B. Zhao, Y. Zhao, Y. Xie, Z. Zheng, Y. Li, J. Sun & H. Wang. 2019a. Development of a haploid-inducer mediated genome editing (IMGE) system for accelerating maize breeding. Molecular Plant 12: 597-602.

    Article  PubMed  CAS  Google Scholar 

  • Wei, B., J. Zhang, C. Pang, H. Yu, D. Guo, H. Jiang & G. Qin. 2014. The molecular mechanism of sporocyteless/nozzle in controlling Arabidopsis ovule development. Cell Research 25: 121-134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu, M. F., Q. Tian & J. W. Reed. 2006. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133: 4211-4218.

    Article  CAS  PubMed  Google Scholar 

  • Xie, E., Y. Li, D. Tang, Y. Lv, Y. Shen & Z. Cheng. 2019. A strategy for generating rice apomixis by gene editing. Journal of Integrative Plant Biology 61: 911-916.

    Article  CAS  PubMed  Google Scholar 

  • Yadegari, R., T. Kinoshita, O. Lotan, G. Cohen, A. Katz, C. Yeonhee, K. Aviva, N. Kazuo, J. H. John, B. G. Robert, L. F. Robert & O. Nir. 2000. Mutations in the FIE and MEA genes that encode interacting polycomb proteins cause parent-of-origin effects on seed development by distinct mechanisms. Plant Cell 12: 2367-2382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, W. & V. Sundaresan. 2000. Genetics of gametophyte biogenesis in Arabidopsis. Current Opinion in Plant Biology 3: 53-57.

    Article  CAS  PubMed  Google Scholar 

  • Yang, W. C., D. Ye, J. Xu & V. Sundaresan. 1999. The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes and Development 13: 2108-2117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, X., C. A. Makaroff & H. Ma. 2003. The Arabidopsis MALE MEIOCYTE DEATH1 gene encodes a PHD-finger protein that is required for male meiosis. The Plant Cell 15: 1281-1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, C., Y. Song, Z. H. Cheng, Y. X. Wang, J. Zhu, H. Ma, L. Xu & Z. N. Yang. 2012. The Arabidopsis thaliana DSB formation (AtDFO) gene is required for meiotic double-strand break formation. Plant Journal 72: 271-281.

    Article  CAS  Google Scholar 

  • Zhang, Z., J. Conner, Y. Guo & P. Ozias-Akins. 2020. Haploidy in tobacco induced by PsASGR-BBML transgenes via parthenogenesis. Genes 11: 1072.

    Article  CAS  PubMed Central  Google Scholar 

  • Zhao, D. Z., G. F. Wang, B. Speal & H. Ma. 2002. The excess microsporocytes1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes and Development 16: 2021-2031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, X., J. de Palma, Oane, R. Gamuyao, M. Luo, A. Chaudhury, P. Hervé, Q. Xue & J. Bennett. 2008. OsTDL1A binds to the LRR domain of rice receptor kinase MSP1 and is required to limit sporocyte numbers. The Plant Journal 54: 375-387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo, Y. & M. P. Deutscher. 2001. Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Research 29: 1017-1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo, J., Q. W. Niu, G. Frugis & N. H. Chua. 2002. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant Journal 30: 349-359.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the Director of ICAR-IISS, Mau for kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Susmita.

Ethics declarations

Conflict of Interest

Authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Susmita, C., Kumar, S.P.J., Chintagunta, A.D. et al. Apomixis: A Foresight from Genetic Mechanisms to Molecular Perspectives. Bot. Rev. 88, 220–256 (2022). https://doi.org/10.1007/s12229-021-09266-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-021-09266-y

Keywords