Skip to main content
Log in

Towards a Standardization of Terminology of the Climbing Habit in Plants

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

In science, standardization of terminology is crucial to make information accessible and allow proper comparison of studies’ results. Climbing plants and the climbing habit have been described in numerous ways, frequently with imprecise and dubious terms. We propose a standardization of terms regarding the climbing habit, with special attention to climbing mechanisms. We abide by previous suggestions that the terms “primary” and “secondary” hemiepiphyte be substituted by “hemiepiphyte” and “nomadic climber” respectively, thus emphasizing the relationship of the latter to the climbing habit. We also suggest that “climbing plant” or “climber” be used to describe plants displaying the climbing habit, and “liana” and “vine” be left for describing woody and herbaceous climbers respectively. As for climbing mechanisms, we propose an eight-category classification comprised of two major categories: passive climbing, containing scrambling, hooks or grapnels, and adhesive roots; and active climbing, containing twining, tendrils, prehensile branches, twining petioles, and twining inflorescences.

Portuguese

Na ciência, a padronização de terminologia é crucial para tornar informações acessíveis e possibilitar a comparação adequada dos resultados de estudos. Trepadeiras e o hábito trepador vêm sendo descritos de diversas maneiras, frequentemente com termos imprecisos e dúbios. Nós propomos uma padronização da terminologia relativa ao hábito trepador, com atenção especial aos mecanismos de escalada. Nós acatamos sugestões anteriores de que os termos “hemiepífita primária” e “secundária” sejam substituídos por “hemiepífita” e “trepadeira nômade” respectivamente, enfatizando assim a relação desta última com o hábito trepador. Nós também sugerimos que “trepadeira” seja utilizado para descrever plantas apresentando o hábito trepador, e “liana” e “trepadeira herbácea” sejam utilizados somente para descrever trepadeiras lenhosas e herbáceas respectivamente. Quanto aos mecanismos de escalada, nós propomos uma classificação com oito categorias compreendidas em duas grandes categorias: trepadeiras passivas, contendo os mecanismos apoiante, ganchos e raízes grampiformes; e trepadeiras ativas, contendo os mecanismos volúvel, gavinhas, ramos preensores, pecíolos volúveis e inflorescências volúveis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. During the writing of this work, this option was changed in Flora do Brasil’s English website version to “Liana/Scandent/Vine”, but the Portuguese and Spanish versions still remain as “Liana/volúvel/trepadeira” and “Liana/voluble/bejuco” respectively, which are equivalent to “Liana/twiner/climber”.

References

  • Acevedo-Rodríguez, P. 2003. Bejucos y plantas trepadoras de Puerto Rico e Islas Vírgenes. Smithsonian Institution, Washington.

    Google Scholar 

  • Acevedo-Rodríguez, P. 2005. Vines and climbing plants of Puerto Rico and the Virgin Islands. Contributions from the United States National Herbarium 51: 1–483.

    Google Scholar 

  • Acevedo-Rodríguez, P. et al. 2015 [onwards]. Lianas and climbing plants of the Neotropics. https://naturalhistory.si.edu/research/botany/research/lianas-and-climbing-plants-neotropics.

  • Addo-Fordjour, P. & Z. B. Rahmad. 2015. Liana assemblages in tropical forests of Africa and Southeast Asia: Diversity, abundance, and management. Pp. 81–98. In: N. Parthasarathy (ed.), Biodiversity of Lianas. Springer International Publishing Switzerland, Cham.

    Google Scholar 

  • Addo-Fordjour, P., Z. B. Rahmad, & R. J. Burnham. 2017. Intercontinental comparison of liana community assemblages in tropical forests of Ghana and Malaysia. Journal of Plant Ecology 10: 883–894.

    Google Scholar 

  • Alvares, C. A., J. L. Stape, P. C. Sentelhas, J. L. M. Gonçalves, & G. Sparovek. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711–728.

    Google Scholar 

  • Andrade, J. L., F. C. Meinzer, G. Goldstein & S. A. Schnitzer. 2004. Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest. Trees 19: 282–289.

    Google Scholar 

  • Angyalossy, V., G. Angeles, M. R. Pace, A. C. Lima, C. Dias-Leme, L. G. Lohmann, & C. Madero-Veja. 2011. An overview on the anatomy, development and evolution of the vascular system of lianas. Plant Ecology & Diversity: 1–16.

  • Antonelli, A. & I. Sanmartín. 2011. Why are there so many plant species in the Neotropics? Taxon 60: 403–414.

    Google Scholar 

  • Avraham, S., C.-W. Tung, K. Ilic, P. Jaiswal, E. A. Kellogg, S. McCouch, A. Pujar, L. Reiser, S. Y. Rhee, M. M. Sachs, M. Schaeffer, L. Stein, P. Stevens, L. Vincent, F. Zapata & D. Ware. 2008. The Plant Ontology Database: a community resource for plant structure and developmental stages controlled vocabulary and annotations. Nucleic Acids Research, 2008, Vol. 36: D449–D454.

    CAS  Google Scholar 

  • Barneby, R. C. 1991. Sensitivae censitae: A description of the genus Mimosa Linnaeus (Mimosaceae) in the New World. Memoirs of the New York Botanical Garden 65: 1–835.

    Google Scholar 

  • Balfour, D. & W. Bond. 1993. Factors limiting climber distribution and abundance in a southern African forest. Journal of Ecology 81: 93–99.

    Google Scholar 

  • Barthlott, W., C. Neinhuis, D. Cutler, F. Ditsch, I. Meusel, I. Theisen, & H. Wilhelmi. 1998. Classification and terminology of plant epicuticular waxes. Botanical Journal of the Linnean Society 126: 237–260.

    Google Scholar 

  • Bell, A. & Bryan, A. 2008. Plant form: an illustrated guide to flowering plant morphology. Timber Press.

  • Beentje, H. 2010. The Kew Plant Glossary: an illustrated dictionary of plant terms. Kew Publishing, Royal Botanic Garden, London.

    Google Scholar 

  • Bult, C., H. Drabkin, A. Evsikov, D. Natale, C. Arighi, N. Roberts, A. Ruttenberg, P. D'Eustachio, B. Smith, J. A. Blake & C. Wu. 2011. The representation of protein complexes in the Protein Ontology (PRO). BMC Bioinformatics 12: 371.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burnham, R. J. 2009. An overview of the fossil record of climbers: bejucos, sogas, trepadoras, lianas, cipós and vines. Revista Brasileira de Paleontologia 12: 149–160.

    Google Scholar 

  • Burnham, R. J. & C. Revilla-Minaya. 2011. Phylogenetic influence on twining chirality in lianas from amazonian Peru. Annals of the Missouri Botanical Garden 98: 196–205.

    Google Scholar 

  • Carlquist, S. 1991. Anatomy of vine and liana stems: a review and synthesis. Pp. 53–72. In: F. E. Putz & H. A. Mooney (eds.), The Biology of Vines. Cambridge University Press, Cambridge.

    Google Scholar 

  • Carter, G. A. & A. H. Teramura. 1988. Vine Photosynthesis and Relationships to Climbing Mechanics in a Forest Understory. American Journal of Botany 75: 1011–1018.

    Google Scholar 

  • Castel, R., E. Kusters & R. Koes. 2010. Inflorescence development in petunia: through the maze of botanical terminology. Journal of Experimental Botany 61: 2235–2246.

  • Citadini-Zanette, V., J. J. Soares & C. M. Martinello. 1997. Lianas de um remanescente florestal da microbacia do Rio Novo, Orleans, Santa Catarina. Insula 26: 45–63.

    Google Scholar 

  • Colautti, R. I. & H. J. MacIsaac. 2004. A neutral terminology to define ‘invasive’ species. Diversity and Distributions 10: 135–141.

    Google Scholar 

  • Cooper, L., A. Meier, M.-A. Laporte, J. Elser, C. J. Mungall, T. B. Sinn, D. Cavaliere, S. Carbon, N. A. Dunn, B. Smith, B. Qu, J. Preece, E. Zhang, S. Todorovic, G. Gkoutos, J. H. Doonan, D. W. Stevenson, E. Arnaud & P. Jaiswal. 2018. The planteome database: an integrated resource for reference ontologies, plant genomics and phenomics. Nucleic Acids Research 46, D1168–D1180. doi: https://doi.org/10.1093/nar/gkx1152.

    Article  CAS  PubMed  Google Scholar 

  • Croat, T. B. 1978. Flora of Barro Colorado Island. Stanford University Press, Redwood City.

    Google Scholar 

  • Darwin, C. 1865. On the Movements and Habits of Climbing Plants. Botanical Journal of the Linnean Society 9: 1–118.

    Google Scholar 

  • DeWalt, S. J., S. A. Schnitzer, J. Chave, F. Bongers, R. J. Burnham, Z. Cai, G. Chuyong, D. B. Clark, C. E. N. Ewango, J. J. Gerwing, E. Gortaire, T. Hart, G. Ibarra-Manríquez, K. Ickes, D. Kenfack, M. J. Macía, J. -R. Makana, M. Martínez-Ramos, J. Mascaro, S. Moses, H. C. Muller-Landau, M. P. E. Parren, N. Parthasarathy, D. R. Pérez-Salicrup, F. E. Putz, H. Romero-Saltos & D. Thomas. 2010. Annual Rainfall and Seasonality Predict Pan-tropical Patterns of Liana Density and Basal Area. Biotropica 42: 309–317.

  • DeWalt, S. J., S. A. Schnitzer & J. S. Denslow. 2000. Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest. Journal of Tropical Ecology 16: 1–19.

    Google Scholar 

  • DiMichele, W. A., M. O. Rischbieter, D. L. Eggert & R. A. Gastaldo. 1984. Stem and leaf cuticle of Karinopteris: Source of cuticles from the Indiana “Paper” Coal. American Journal of Botany 71: 626–637.

  • Durigon, J. & J. L. Waechter. 2011. Floristic composition and biogeographic relations of a subtropical assemblage of climbing plants. Biodiversity Conservation 20: 1027–1044.

  • Durigon, J., S. M. Durán & E. Gianoli. 2013. Global distribution of root climbers is positively associated with precipitation and negatively associated with seasonality. Journal of Tropical Ecology 29: 357–360.

    Google Scholar 

  • Durigon, J., S. T. S. Miotto & E. Gianoli. 2014. Distribution and traits of climbing plants in subtropical and temperate South America. Journal of Vegetation Science 25: 1484–1492.

    Google Scholar 

  • Durigon, J., P. Sperotto, P. P. A. Ferreira, G. A. Dettke, R. A. Záchia, M. A. Farinaccio, G. D. S. Seger & S. T. S. Miotto. 2019. Updates on extratropical region climbing plant flora: news regarding a still-neglected diversity. Acta Botanica Brasilica 33: 644–653.

  • Edwards, W., A. T. Moles & P. Franks. 2007. The global trend in plant twining direction. Global Ecology and Biogeography 16: 795–800.

    Google Scholar 

  • Emmons, L. H. & A. H. Gentry. 1983. Tropical forest structure and the distribution of gliding and prehensile-tailed vertebrates. The American Naturalist 121: 513–524.

    Google Scholar 

  • Endress, P. K. 2010. Disentangling confusions in inflorescence morphology: Patterns and diversity of reproductive shoot ramification in angiosperms. Journal of Systematics and Evolution 48: 225–239.

    Google Scholar 

  • Ewers, F. W., J. B. Fisher & K. Fichtner. 1991. Water flux and xylem structure in vines. Pp. 127–160 In: F. E. Putz & H. A. Mooney (eds.), The Biology of Vines. Cambridge University Press, Cambridge.

    Google Scholar 

  • Ferreira, P. L. 2015. Sistemática de Barnadesioideae (Asteraceae) com ênfase em Dasyphyllum. Unpublished Master thesis, Universidade de São Paulo, São Paulo.

  • Fishbein, M., T. Livshultz, S. C. K. Straub, A. O. Simões, J. Boutte, A. McDonnell & A. Foote. 2018. Evolution on the backbone: Apocynaceae phylogenomics and new perspectives on growth forms, flowers, and fruits. American Journal of Botany 105: 495–513.

    PubMed  Google Scholar 

  • Flora do Brasil 2020. [under construction]. Jardim Botânico do Rio de Janeiro. Accessed http://floradobrasil.jbrj.gov.br/. Access in: 29 Aug 2019.

  • Font-Quer, P. 2001. Diccionario de Botánica. Ediciones Península, Barcelona.

    Google Scholar 

  • Gallagher, R. V. & M. R. Leishman. 2012. A global analysis of trait variation and evolution in climbing plants. Journal of Biogeography 39: 1757–1771.

    Google Scholar 

  • Gentry, A. H. 1991. The distribution and evolution of climbing plants. Pp. 3–49. In: F. E. Putz and H. A. Mooney (eds.), The Biology of Vines. Cambridge University Press, Cambridge.

  • Gentry, A. H., R. E. Woodson & R. W. Schery. 1973. Flora of Panama. Part IX. Family 172. Bignoniaceae. Annals of the Missouri Botanical Garden 60: 781–997.

  • Gene Ontology Consortium. 2012. The Gene Ontology: enhancements for 2011. Nucleic Acids Research 40: D559–D564.

    Google Scholar 

  • Gianoli, E. 2004. Evolution of a climbing habit promotes diversification in flowering plants. Proceedings of the Royal Society B: Biological Sciences 271: 2011–2015.

    PubMed  Google Scholar 

  • Gianoli, E. 2015. Evolutionary Implications of the Climbing Habit in Plant. Pp. 239–250. In: S. A. Schnitzer, F. Bongers, R. J. Burnham & F. E. Putz (eds.), Ecology of Lianas. JohnWiley & Sons, Ltd, West Sussex.

  • Gianoli, E., A. Saldaña, M. Jiménez-Castillo & F. Valladares. 2010. Distribution and abundance of vines along the light gradient in a southern temperate rain forest. Journal of Vegetation Science 21: 66–73.

    Google Scholar 

  • Gilbert, B., S. J. Wright, H. C. Muller-Landau, K. Kitajima & A. Hernandéz. 2006. Life History Trade-Offs in Tropical Trees and Lianas. Ecology 87: 1281–1288.

    PubMed  Google Scholar 

  • Groppo, M. & J. R. Pirani. 2005. Levantamento florístico das espécies de ervas, subarbustos, lianas e hemiepífitas da mata da reserva da Cidade Universitária "Armando de Salles Oliveira", São Paulo, SP, Brasil. Boletim de Botânica da Universidade de São Paulo 23: 141–233.

    Google Scholar 

  • Hall, L. S., P. R. Krausman & M. L. Morrison. 1997. The habitat concept and a plea for standard terminology. Wildlife Society Bulletin 25: 173–182.

    Google Scholar 

  • Hegarty, E. E. 1991. Vine-host interaction. Pp. 357–376. In: F. E. Putz & H. E. Mooney (eds.), The Biology of Vines. Cambridge University Press., Cambridge.

    Google Scholar 

  • Hodges, K. E. 2008. Defining the problem: terminology and progress in ecology. Frontiers in Ecology and the Environment 6: 35–42.

    Google Scholar 

  • Holbrook, N. M. & F. E. Putz. 1996. Physiology of Tropical Vines and Hemiepiphytes: Plants that Climb Up and Plants that Climb Down. Pp. 363–394. In: S. S. Mulkey, R. L. Chazdon & A. P. Smith (eds.), Tropical Forest Plant Ecology. Springer, Boston.

    Google Scholar 

  • Hu, L. & M. Li. 2015. Diversity and Distribution of Climbing Plants in Eurasia and North Africa. Pp. 57–79. In: N. Parthasarathy (ed.), Biodiversity of Lianas. Springer International Publishing Switzerland, Cham.

    Google Scholar 

  • Hu, LM. Li & Z. Li. 2010. Geographical and environmental gradients of lianas and vines in China. Global Ecology and Biogeography 19: 554–561.

    Google Scholar 

  • Huth, W. 1912. Die fossile Gattung Mariopteris in geologischer und botanischer Beziehung. Pp. 141–160. In: H. Potonié (ed.), Abbildungen und Beschreibungen fossiler Pflanzen 8I, nos. 1–18. Königlich Preußische Geologische Landesanstalt, Berlin.

  • Ilic, K., E. A. Kellogg, P. Jaiswal, F. Zapata, P. F. Stevens, L. P. Vincent, S. Avraham, L. Reiser, A. Pujar, M. M. Sachs, N. T. Whitman, S. R. McCouch, M. L. Schaeffer, D. H. Ware, L. D. Stein & S. Y. Rhee. 2007. The Plant Structure Ontology, a Unified Vocabulary of Anatomy and Morphology of a Flowering Plant. Plant Physiology 143: 587–599.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Isnard, S. & N. P. Rowe. 2008. The climbing habit in palms: Biomechanics of the cirrus and flagellum. American Journal of Botany 95: 1538–1547.

    PubMed  Google Scholar 

  • Isnard, S. & W. K. Silk. 2009. Moving with climbing plants from Charles Darwin's time into the 21st century. American Journal of Botany 96: 1205–1221.

    PubMed  Google Scholar 

  • Kaur K. M., P.-J. G. Malé, E. Spence, C. Gomez & M. E. Frederickson. 2019. Using text-mined trait data to test for cooperate-and-radiate co-evolution between ants and plants. PLoS Computational Biology 15: e1007323. https://doi.org/10.1371/journal.pcbi.1007323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kljuykov, E.V., M. Liu, T. A. Ostroumova, M. G. Pimenov, P. M. Tilney & B.-E. Wyk. 2004. Towards a standardised terminology for taxonomically important morphological characters in the Umbelliferae. South African Journal of Botany 70: 488–496.

    Google Scholar 

  • Knapp, S. 2010. Four New Vining Species of Solanum (Dulcamaroid Clade) from Montane Habitats in Tropical America. PLoS ONE 5: 1–8.

  • Knapp, S. 2013. A revision of the Dulcamaroid Clade of Solanum L. (Solanaceae). PhytoKeys 22: 1–432.

  • Kress, W. J. 1986. The systematic distribution of vascular epiphytes: an update. Selbyana 9: 2–22.

    Google Scholar 

  • Krings, M. & H. Kerp. 1997. Cuticles of Lescuropteris genuina from the Stephanian (Upper Carboniferous) of Central France: Evidence for a climbing growth habit. Botanical Journal of the Linnaean Society 123: 73–89.

    Google Scholar 

  • Krings, M. & H. Kerp. 1999. Morphology, growth habit, and ecology of Blanzyopteris praedentata (Gothan) nov. comb., a climbing neuropteroid seed fern from the Stephanian of central France. International Journal of Plant Science 160: 603–619.

  • Krings, M., H. Kerp, T. N. Taylor, & E. L. Taylor. 2003. How paleozoic vines and lianas got off the ground: on scrambling and climbing carboniferous–early permian pteridosperms. The Botanical Review 69: 204–224.

  • Ladwig, L. M. & S. J. Meiners. 2010. Spatiotemporal dynamics of lianas during 50 years of succession to temperate forest. Ecology 91: 671–680.

    PubMed  Google Scholar 

  • Linnaeus, C. 1753. Species Plantarum. Laurentius Salvius, Stockholm.

    Google Scholar 

  • Linnaeus, C. 1788. Philosophie botanique dans laquelle sont expliqués les fondements de la botanique, avec les définitions de ses parties, des exemples des termes, des observations sur les plus rares, enrichie de figures, trad. Fr. A. Jacques Cailleau, Libraire-Imprimeur, Paris.

  • Marzinek, J., O. C. De-Paula, & D. M. T. Oliveira. 2008. Cypsela or achene? Refining terminology by considering anatomical and historical factors. Revista Brasileira de Botânica 31: 549–553.

  • McIntosh, R. P. 1991. Concept and terminology of homogeneity and heterogeneity in ecology. Springer-Verlag New York: New York.

    Google Scholar 

  • Moffett, M. W. 2000. What's "Up"? A Critical Loolc at the Basic Terms of Canopy Biology. Biotropica 32: 569–596.

    Google Scholar 

  • Mohl, H. 1827. Über den Bau und Winden der Ranken und Schlingpflanzen. Heinrich Laupp: Tübingen.

    Google Scholar 

  • Morellato, P. C. & H. F. Leitão-Filho. 1996. Reproductive Phenology of Climbers in a Southeastern Brazilian Forest. Biotropica 28: 180–191.

    Google Scholar 

  • Natale, D., C. Arighi, W. Barker, J. Blake, T.-C. Chang, Z. Hu, H. Liu, B. Smith & C. H. Wu. 2007. Framework for a Protein Ontology. BMC Bioinformatics 8: S1. https://doi.org/10.1186/1471-2105-8-S9-S1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palm, L. H. 1827. Über das Winden der Pflanzen. F. C. Löflund et Sohn: Stuttgart.

    Google Scholar 

  • Parthasarathy, N. 2015. Biodiversity of Lianas. Springer International Publishing Switzerland, Cham.

  • Pedraza-Peñalosa, P. 2010. Disterigma (Ericaceae: Vaccinieae). Flora Neotropica 108: 1–126.

  • Plumier, C. 1693. Description des plantes de l’Amerique avec leurs figures. L’Imprimerie Royale: Paris.

    Google Scholar 

  • Prenner, G., F. Vergara-Silva & P. J. Rudall. 2009. The key role of morphology in modelling inflorescence architecture. Trends in Plant Science 14: 302–309.

    CAS  PubMed  Google Scholar 

  • Putz, F. E. 1984. The Natural History of Lianas on Barro Colorado Island, Panama. Ecology 65: 1713–1724.

    Google Scholar 

  • Putz, F. E. & N. M. Holbrook. 1986. Notes on the Natural History of Hemiepiphytes. Selbyana 9: 61–69.

    Google Scholar 

  • Putz, F. E. & N. M. Holbrook 1991. Biomechanical studies of vines. Pp. 73–98. In: F. E. Putz & H. A. Mooney (eds.), The Biology of Vines. Cambridge University Press, Cambridge.

    Google Scholar 

  • Putz, F. E. & P. Chai. 1987. Ecological Studies of Lianas in Lambir National Park, Sarawak, Malaysia. Journal of Ecology 75: 523–531.

  • Putz, F. E., N. M. Holbrook & H. A. Mooney. 1991. The Biology of Vines. Cambridge: Cambridge University Press.

  • Raunkiaer, C. 1934. The life forms of plants and statistical plant geography; being the collected papers of C. Raunkiaer. Clarendon Press, Oxford.

    Google Scholar 

  • Raunkiaer, C. 1937. Plant life forms. Clarendon Press, Oxford.

    Google Scholar 

  • Ray, T. S. 1992. Foraging Behaviour in Tropical Herbaceous Climbers (Araceae). Journal of Ecology 80: 189–203.

    Google Scholar 

  • Richards, P. W. 1952. The tropical rainforest: an ecological study. Cambridge University Press, Cambridge.

  • Rowe, N., S. Isnard & T. Speck. 2004. Diversity of Mechanical Architectures in Climbing Plants: An Evolutionary Perspective. Journal of Plant Growth Regulation 23: 108–128.

    CAS  Google Scholar 

  • Merriam Webster Dictionary. Scandent. (n.d.) Retrieved from https://www.merriam-webster.com/dictionary/scandent.

  • Schenck, H. 1892. Heft 4: Beiträge zur Biologie und Anatomie der Lianen, im Besonderes der in Brasilien einheimischen Arten. I Theil: Beiträge zur Biologie der Lianen. Gustav Fischer: Jena.

    Google Scholar 

  • Schenck, H. 1893. Heft 5: Beiträge zur Biologie und Anatomie der Lianen, im Besonderes der in Brasilien einheimischen Arten. II Theil: Beiträge zur Anatomie der Lianen. Gustav Fischer: Jena.

    Google Scholar 

  • Schnitzer, S. A. 2005. A mechanistic explanation for global patterns of liana abundance and distribution. The American Naturalist 166: 262–276.

    PubMed  Google Scholar 

  • Schnitzer, S. A. & F. Bongers. 2002. The ecology of lianas and their role in forests. TRENDS in Ecology & Evolution 17: 223–230.

    Google Scholar 

  • Schnitzer, S. A & F. Bongers. 2011. Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecology Letters 14: 397–406.

  • Schnitzer, S. A. & F. Bongers, R. J. Burnham & F. E. Putz. 2015. Ecology of Lianas. JohnWiley & Sons, Ltd, West Sussex.

  • Seger, G. D. S., L. Cappelatti, L. O. Gonçalves, F. G. Becker, A. S. Melo & L. D. S. Duarte. 2017. Phylogenetic and functional structure of climbing plant assemblages in woody patches advancing over Campos grassland. Journal of Vegetation Science 28: 1187–1197.

    Google Scholar 

  • Sousa-Baena, M., Sinha N. R., & Lohmann L. G. 2014. Evolution and Development of Tendrils in Bignonieae (Lamiales, Bignoniaceae). Annals of the Missouri Botanical Garden 99: 323–347.

  • Sousa-Baena, M. S., L. G. Lohmann, J. Hernandes-Lopes & N. R. Sinha. 2018a. The molecular control of tendril development in angiosperms. New Phytologist: 1–15.

  • Sousa-Baena, M. S., N. R. Sinha, J. Hernandes-Lopes & L. G. Lohmann. 2018b. Convergent Evolution and the Diverse Ontogenetic Origins of Tendrils in Angiosperms. Frontiers in Plant Science 9: 1–19.

    Google Scholar 

  • Treub, M. 1883. Sur une nouvelle catégorie de plantes grimpantes. Annales du Jardin Botanique de Buitenzorg 3: 44–75.

    Google Scholar 

  • Valladares, F., E. Gianoli & A. Saldaña. 2011. Climbing plants in a temperate rainforest understorey: searching for high light or coping with deep shade? Annals of Botany 108: 231–239.

  • van der Heijden, G. M. F., J. S. Powers & S. A. Schnitzer. 2015. Lianas reduce carbon accumulation and storage in tropical forests. Proceedings of the National Academy of Sciences 112: 13267–13271.

    Google Scholar 

  • Vaughn, K. C. & A. J. Bowling. 2011. Biology and Physiology of Vines. John Wiley & Sons, Inc.: Hoboken.

    Google Scholar 

  • Villagra, B. L. P. & S. R. Neto. 2014. Nomenclatura das plantas de hábito trepador. Pp. 3–12. In: B. L. P. Villagra, M. M. R. F. Melo, S. R. Neto & L. M. Barbosa (eds.), Diversidade e conservação de trepadeiras: contribuição para a restauração de ecossistemas brasileiros. Instituto de Botânica, São Paulo.

    Google Scholar 

  • Walls, R.L., B. Athreya, L. Cooper, J. Elser, M. A. Gandolfo, P. Jaiswal, C. J. Mungall, J. Preece, S. Rensing, B. Smith & D. W. Stevenson. 2012. Ontologies as integrative tools for plant science. American Journal of Botany 99: 1263–1275.

    PubMed  PubMed Central  Google Scholar 

  • Walls, R.L., L. Cooper, J. Elser, M. A. Gandolfo, C. J. Mungall, B. Smith, D. W. Stevenson & P. Jaiswal. 2019. The Plant Ontology Facilitates Comparisons of Plant Development Stages Across Species. Frontiers in Plant Science. 10:631. https://doi.org/10.3389/fpls.2019.00631.

    Article  PubMed  PubMed Central  Google Scholar 

  • Winegardner, A. K., B. K. Jones, I. S. Y. Ng, T. Siqueira & K. Cottenie. 2012. The terminology of metacommunity ecology. Trends in Ecology and Evolution 27: 253–254.

    PubMed  Google Scholar 

  • Zotz, G. 2013. 'Hemiepiphyte': a confusing term and its history. Annals of Botany 111: 1015–1021.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. P. Sperotto thanks Dr. Maria Alves for helpful insights in the writing of the manuscript, the Smithsonian Institution for the Smith Award 2019 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the Msc. scholarship grant (133,623/2018–1). N. Roque also thanks CNPq for the research grant (NR-3051139/2016–9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia Sperotto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sperotto, P., Acevedo-Rodríguez, P., Vasconcelos, T.N.C. et al. Towards a Standardization of Terminology of the Climbing Habit in Plants. Bot. Rev. 86, 180–210 (2020). https://doi.org/10.1007/s12229-020-09218-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-020-09218-y

Keywords

Palavras-chave

Navigation