The Botanical Review

, Volume 83, Issue 2, pp 195–212

Fruit and Seed Dispersal of Salvia L. (Lamiaceae): A Review of the Evidence

Article

Abstract

The seed dispersal mechanisms of Salvia species are reviewed, with particular attention to quantitative or experimental evidence of dispersal. Despite having rather uniform fruit morphology, Salvia has several dispersal mechanisms: dispersal of mericarps by water (hydrochory), wind (anemochory), animals (zoochory) or gravity (barochory). Cases of myrmecochory are highlighted, along with dispersal by the plant itself via springy or hygroscopic pedicels. Despite having no visible means of dispersal, many Salvia species disperse for short to medium distances. Many gaps in our knowledge of dispersal exist, despite the fact that knowledge of dispersal mechanisms is critical in evaluating invasive potential, conservation status, usefulness in habitat restoration, and geographic distribution.

Keywords

Anemochory Hydrochory Lamiaceae Salvia Seed dispersal Zoochory 

Literature Cited

  1. Birhane, E., D. Teketay & P. Barklund. 2007. Exclosures to enhance woody species diversity in the dry lands of eastern Tigray, Ethiopia. East African Journal of Sciences 1: 136–147.Google Scholar
  2. Bohonak, A. J. 1999. Dispersal, gene flow, and population structure. Quarterly Review of Biology 74: 21–45.Google Scholar
  3. Bonn, S. 2004. Dispersal of plants in the Central European landscape – dispersal processes and assessment of dispersal potential exemplified for endozoochory. PhD dissertation, Naturwissenschaftlichen Fakultät, Biologie und Vorklinische Medizin, Universität Regensburg, Germany.Google Scholar
  4. Bottega, S. & G. Corsi. 2000. Structure, secretion and possible functions of calyx glandular hairs of Rosmarinus officinalis L. (Labiatae). Botanical Journal of the Linnean Society 132: 325–335.Google Scholar
  5. Bouman, F. & A. D. J. Meeuse. 1992. Dispersal in Labiatae, pp. 193–202, in Harley, R.M. & T. Reynolds (eds.). Advances in Labiate Science. Royal Botanic Gardens, Kew.Google Scholar
  6. Brodie, H. J. 1955. Springboard plant dispersal mechanisms operated by rain. Canadian Journal of Botany 33: 156–167.Google Scholar
  7. Buisson, E. & T. Dutoit. 2004. Colonisation by native species of abandoned farmland adjacent to a remnant patch of Mediterranean steppe. Plant Ecology 174: 371–384.Google Scholar
  8. Cahill, J. P. 2005. Human selection and domestication of chia (Salvia hispanica L.). Journal of Ethnobiology 25: 155–174.Google Scholar
  9. Carlquist, S. & Q. Pauly. 1985. Experimental studies on epizoochorous dispersal in Californian plants. Aliso 11: 167–177.Google Scholar
  10. Celep, F., Z. Atalay, F. Dikmen, M. Doğan & R. Claßen-Bockhoff. 2014. Flies as pollinators of melittophilous Salvia species (Lamiaceae). American Journal of Botany 101: 2148–2159.Google Scholar
  11. Chambers, J. C. & J. A. MacMahon. 1994. A day in the life of a seed: Movements and fates of seeds and their implications for natural and managed systems. Annual Review of Ecology & Systematics 25: 263–292.Google Scholar
  12. Claßen-Bockhoff, R., Wester & E. Tweraser. 2003. The staminal lever mechanism in Salvia L. (Lamiaceae) – A review. Plant Biology 5: 33–41.Google Scholar
  13. Clubbe, C., M. Corcoran, M. Hamilton & M. DaCosta-Cottam. 2010. Salvia caymanensis. Curtis’s Botanical Magazine 27: 365–375.Google Scholar
  14. Corsi, G. & S. Bottega. 1999. Glandular hairs of Salvia officinalis: New data on morphology, localization and histochemistry in relation to function. Annals of Botany 84: 657–664.Google Scholar
  15. Cortés-Flores, J., E. Andresen, G. Cornejo-Tenorio & G. Ibarra-Manríquez. 2013. Fruiting phenology of seed dispersal syndromes in a Mexican Neotropical temperate forest. Forest Ecology & Management 289: 445–454.Google Scholar
  16. Crossman, N. D., B. A. Bryan & D. A. Cooke. 2008. An invasive plant and climate change threat index for weed risk management: Integrating habitat distribution pattern and dispersal process. Ecological Indicators 11: 183–198.Google Scholar
  17. Davies, K. W. & R. L. Sheley. 2007. A conceptual framework for preventing spatial dispersal of invasive plants. Weed Science 55: 178–184.Google Scholar
  18. DeSimone, S. A. & P. H. Zedler. 2001. Do shrub colonizers of southern California grassland fit generalities for other woody colonizers? Ecological Applications 11: 1101–1111.Google Scholar
  19. Diacon-Bolli, J. C., P. J. Edwards, H. Bugmann, C. Scheidegger & H. H. Wagner. 2013. Quantification of plant dispersal ability within and beyond a calcareous grassland. Journal of Vegetation Science 24: 1010–1019.Google Scholar
  20. Dizkirici, A., F. Celep, C. Kansu, A. Kahraman, M. Dogan & Z. Kaya. 2015. A molecular phylogeny of Salvia euphratica sensu lato (Salvia L., Lamiaceae) and its closely related species with a focus on the section Hymenosphace. Plant Systematics & Evolution 301: 2313–2323.Google Scholar
  21. Duque, A., P. R. Stevenson & K. J. Feeley. 2015. Thermophilization of adult and juvenile tree communities in the northern tropical Andes. Proceedings of the National Academy of Sciences (USA) 112: 10744–10749.Google Scholar
  22. Eckert, C. G., K. E. Samis & S. C. Lougheed. 2008. Genetic variation across species’ geographical ranges: the central-margin hypothesis and beyond. Molecular Ecology 17: 1170–1188.Google Scholar
  23. Engelbrecht, M. & P. García-Fayos. 2012. Mucilage secretion by seeds doubles the chance to escape removal by ants. Plant Ecology 213: 1167–1175.Google Scholar
  24. Fahn, A. & E. Werker. 1972. Anatomical mechanisms of seed dispersal, pp. 151–221, in Kozlowski, T. T. (ed.) Seed Biology, vol. 1. Academic Press, NY.Google Scholar
  25. Feeley, K. J., E. M. Rehm & B. Machovina. 2012. The responses of tropical forest species to global climate change: acclimate, adapt, migrate or go extinct? Frontiers of Biogeography 4: 69–84.Google Scholar
  26. Fuller, P. J. & M. E. Hay. 1983. Is glue production by seeds of Salvia columbariae a deterrent to desert granivores? Ecology 64: 960–963.Google Scholar
  27. García-Fayos, P., E. Bochet & A. Cerdà. 2010. Seed removal susceptibility through soil erosion shapes vegetation composition. Plant & Soil 334: 289–297.Google Scholar
  28. Giltrap, N., D. Eyre & P. Read. 2009. Internet sales of plants for planting – an increasing tread and threat? OEPP/EPPO Bulletin 39: 168–170.Google Scholar
  29. Hedge, I. C. 1970. Observations on the mucilage of Salvia fruits. Notes Roy. Bot. Gard. Edinburgh 30: 79–95.Google Scholar
  30. Hedge, I. C. 1974. A revision of Salvia in Africa including Madagascar and the Canary Islands. Notes from the Royal Botanic Garden Edinburgh 33: 1–121.Google Scholar
  31. Hegland, S. J., M. van Leeuwen & J. G. B. Oostermeijer. 2001. Population structure of Salvia pratensis in relation to vegetation and management of Dutch dry floodplain grasslands. Journal of Applied Ecology 38: 1277–1289.Google Scholar
  32. Hernández Gómez, J. A. & S. Miranda Colín. 2008. Caracterización morfológica de chía (Salvia hispanica). Revista Fitotecnia Mexicana 31: 105–113.Google Scholar
  33. Howe, H. F. & J. Smallwood. 1982. Ecology of seed dispersal. Annual Review of Ecology & Systematics 13: 201–228.Google Scholar
  34. Hyatt, L. A., M. S. Rosenberg, T. G. Howard, G. Bole, W. Fang, J. Anastasia, K. Brown, R. Grella, K. Hinman, J. P. Kurdziel & J. Gurevitch. 2003. The distance dependence prediction of the Janzen-Connell hypothesis: a meta-analysis. Oikos 103: 590–602.Google Scholar
  35. Janzen, D. H. 1984. Dispersal of small seeds by big herbivores: foliage is the fruit. American Naturalist 123: 338–353.Google Scholar
  36. Jenks, A. A., J. B. Walker & S.-C. Kim. 2013. Phylogeny of New World Salvia subgenus Calosphace (Lamiaceae) based on cpDNA (psbA-trnH) and nrDNA (ITS) sequence data. Journal of Plant Research 126: 483–496.Google Scholar
  37. Kasowska, D. & A. Koszelnik-Leszek. 2014. Ecological features of spontaneous vascular flora of serpentine post-mining sites in Lower Silesia. Archives of Environmental Protection 40: 33–52.Google Scholar
  38. Kellogg, C. A. & D. W. Griffin. 2006. Aerobiology and the global transport of desert dust. TRENDS in Ecology & Evolution 21: 638–644.Google Scholar
  39. Kreitschitz, A. 2009. Biological properties of fruit and seed slime envelope: How to live, fly, and not die, pp. 11–30, in Gorb, S. N. (ed.) Functional Surfaces in Biology, vol. 1. Springer, Netherlands.Google Scholar
  40. Kreitschitz, A. 2012. Mucilage formation in selected taxa of the genus Artemesia L. (Asteraceae, Anthemideae). Seed Science Research 22: 177–189.Google Scholar
  41. Lazkov, G. & A. Sennikov. 2014. New records in vascular plants alien to Kyrgyzstan. Biodiversity Data Journal 2: e1018. doi:10.3897/BDJ.2.e1018
  42. Lenormand, T. 2002. Gene flow and the limits of natural selection. Trends in Ecology & Evolution 17: 183–189.Google Scholar
  43. Martínez-Orea, Y., A. Orozco-Segovia, S. Castillo-Argüero, M. Collazo-Ortega & J. A. Zavala-Hurtado. 2014. Seed rain as a source for natural regeneration in a temperate forest in Mexico City. Journal of the Torrey Botanical Society 141: 135–150.Google Scholar
  44. Matsumura, T. & Y. Takeda. 2010. Relationship between species richness and spatial and temporal distance from seed source in semi-natural grassland. Applied Vegetation Science 13: 336–345.Google Scholar
  45. Melcher, I. M., F. Bouman & A. M. Cleef. 2000. Seed dispersal in páramo plants: epizoochorous and hydrochorous taxa. Plant Biology 2: 40–52.Google Scholar
  46. Melendo, M., E. Giménez, E. Cano, F. Gómez-Mercado & F. Valle. 2003. The endemic flora in the south of the Iberian Peninsula: taxonomic composition, biological spectrum, pollination, reproductive mode and dispersal. Flora 198: 260–276.Google Scholar
  47. Midoko-Iponga, D., C. B. Krug & S. J. Milton. 2005. Competition and herbivory influence growth and survival of shrubs on old fields: Implications for restoration of renosterveld shrubland. Journal of Vegetation Science 16: 685–692.Google Scholar
  48. Montalvo, A. M. 2004. Salvia apiana Jepson, p. 671–675, in Francis, J. K. (ed.) Wildland Shrubs of the United States and its Territories: Thamnic Descriptions: Volume 1. Gen. Tech. Rep. IITF-GTR-26. U.S. Department of Agriculture, Forest Service, International Institute of Tropical Forestry, San Juan, PR &: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, CO.Google Scholar
  49. Montalvo, A. M. & P. A. McMillan. 2004. Salvia mellifera Greene, p. 676–680, in Francis, J. K. (ed.) Wildland Shrubs of the United States and its Territories: Thamnic Descriptions: Volume 1. Gen. Tech. Rep. IITF-GTR-26. U.S. Department of Agriculture, Forest Service, International Institute of Tropical Forestry, San Juan, PR &: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, CO.Google Scholar
  50. Nathan, R. & G. G. Katul. 2005. Foliage shedding in deciduous forests lifts up long-distance seed dispersal by wind. Proceedings Nat. Acad. Sci. (PNAS) 102: 8251–8256.Google Scholar
  51. Nathan, R., F. M. Schurr, O. Spiegel, O. Steinitz, A. Trakhtenbrot & A. Tsoar. 2008. Mechanisms of long-distance dispersal. Trends in Ecology & Evolution 23: 638–647.Google Scholar
  52. Navarroa, T., J. El Oualidib, M. Sghir Talebc, V. Pascuala & B. Cabezudo. 2009. Dispersal traits and dispersal patterns in an oro-Mediterranean thorn cushion plant formation of the eastern High Atlas, Morocco. Flora – Morphology, Distribution, Functional Ecology of Plants 204: 658–672.Google Scholar
  53. Ne’eman, G. & A. Dafni. 1999. Fire, bees, and seed production in a Mediterranean key species Salvia fruticosa Miller (Lamiaceae). Israel Journal of Plant Sciences 47: 157–163.Google Scholar
  54. Nicolai, N. C. 2005. Plant community dynamics governed by red harvester ant (Pogonomyrmex barbatus) activities and their role as drought refugia in a semi-arid savanna. PhD dissertation, Texas A&M University, College Station, Texas. 176 pp.Google Scholar
  55. Ohashi, K. 2002. Consequences of floral complexity for bumblebee-mediated geitonogamous self-pollination in Salvia nipponica Miq. (Labiatae). Evolution 56: 2414–2423.Google Scholar
  56. Ott, D., P. Hühn & R. Claßen-Bockhoff. 2016. Salvia apiana – A carpenter bee flower? Flora 221: 82–91.Google Scholar
  57. van der Pijl, L. 1982. Principles of Dispersal in Higher Plants. 3rd ed. Springer, Berlin. 215 pp.Google Scholar
  58. Ramirez-Marcial, N., M. Gonzalez-Espinosa & P. F. Quintana-Ascencio. 1992. Banco y lluvia de semillas en comunidades sucesionales de bosques de pino-encino de los altos de Chiapas, Mexico. Acta Botánica Mexicana 20: 59–75.Google Scholar
  59. Reith, M. & S. Zona. 2016. Nocturnal flowering and pollination of a rare Caribbean sage, Salvia arborescens (Lamiaceae). Neotropical Biodiversity 2: 115–123.Google Scholar
  60. van Rheede van Oudtshoorn, K. & M. W. van Rooyen. 1999. Dispersal Biology of Desert Plants. Springer, Berlin. 242 pp.Google Scholar
  61. Ridley, H N. 1930. Dispersal of Plants throughout the World. L. Reeve & Co., Ashford, Kent.Google Scholar
  62. Riley, L. & M. E. McGlaughlin. 2016. Endemism in native floras of California’s Channel Islands correlated with seasonal patterns of aeolian processes. Botany-Botanique 94: 65–72.Google Scholar
  63. Riley, L., M. E. McGlaughlin & K. Helenurm. 2016. Narrow water barriers prevent multiple colonizations and limit gene flow among California Channel Island wild buckwheats (Eriogonum; Polygonaceae). Botanical Journal of the Linnean Society 181: 246–268.Google Scholar
  64. Roché, C. 1991. Mediterranean sage (Salvia aethiopis L.). Pacific Northwest Cooperative Extension Bulletin PNW381.Google Scholar
  65. Römermann, C., O. Tackenberg & P. Poschlod. 2005. How to predict attachment potential of seeds to sheep and cattle coat from simple morphological seed traits. Oikos 110: 219–230.Google Scholar
  66. Ryding, O. 2001. Myxocarpy in the Nepetoideae (Lamiaceae) with notes on myxodiaspory in general. Systematic Geography of Plants 71: 503–514.Google Scholar
  67. Sales, F., I. C. Hedge & F. Christie. 2010. Salvia plebeia R. Br.: Taxonomy, phytogeography, autogamy and myxospermy. Pakistan Journal of Botany 42: 99–110.Google Scholar
  68. Sanmartín, I., L. Wanntorp & R. C. Winkworth. 2007. West Wind Drift revisited: testing for directional dispersal in the Southern Hemisphere using event-based tree fitting. Journal of Biogeography 34: 398–416.Google Scholar
  69. Skarpaas, O. & K. Shea. 2007. Dispersal patterns, dispersal mechanisms, and invasion wave speeds for invasive thistles. The American Naturalist 170: 421–430.Google Scholar
  70. Steinberger, Y., H. Leschner & A. Shmida. 1991. Chaff piles of harvester ant (Messor spp.) nests in a desert ecosystem. Insect Society 38: 241–250.Google Scholar
  71. Tabak, N. 2011. Salvia glutinosa (Lamiaceae) naturalized in southeastern New York. Rhodora 113: 220–224.Google Scholar
  72. Thomson, F. J., A. T. Moles, T. D. Auld & R. T. Kingsford. 2011. Seed dispersal distance is more strongly correlated with plant height than with seed mass. Journal of Ecology 99: 1299–1307.Google Scholar
  73. Vargas, P., R. Heleno, A. Traveset & M. Nogales. 2012. Colonization of the Galápagos Islands by plants with no specific syndromes for long-distance dispersal: a new perspective. Ecography 35: 33–43.Google Scholar
  74. Vazačová, K. & Z. Münzbergová. 2013. Simulated seed digestion by birds: How does it reflect the real passage through a pigeon’s gut. Folia Geobotanica 48: 245–269.Google Scholar
  75. Vazačová, K. & Z. Münzbergová. 2014. Dispersal ability of island endemic plants: What can we learn using multiple dispersal traits? Flora 209: 530–539.Google Scholar
  76. Walck, J. L. & S. N. Hidayati. 2007. Ombrohydrochory and its relationship to seed dispersal and germination strategies in two temperate North American Oenothera species (Onagraceae). Int. J. Plant Sci. 168: 1279–1290.Google Scholar
  77. Walker, J. B., B. T. Drew & K. J. Sytsma. 2015. Unravelling species relationships and diversification within the iconic California Floristic Province sages (Salvia subgenus Audibertia, Lamiaceae). Systematic Botany 40: 826–844.Google Scholar
  78. Wang, B. C. & T. B. Smith. 2002. Closing the seed dispersal loop. TRENDS in Ecology & Evolution 17: 379–385.Google Scholar
  79. Watkinson, A. R. & J. A. Gill. 2002. Climate change and dispersal, pp. 410–428, in, Bullock, J. M., R. E. Kenward & R. S. Hails (eds.) Dispersal Ecology: the 42nd symposium of the British Ecological Society held at the University of Reading, 2–5 April 2001. Blackwell Science Ltd, Oxford.Google Scholar
  80. Wester P., & R. Claßen-Bockhoff. 2006a. Bird pollination in South African Salvia species. Flora – Morphology, Distribution, Functional Ecology of Plants 201: 396–406.Google Scholar
  81. Wester P., & R. Claßen-Bockhoff. 2006b. Hummingbird pollination in Salvia haenkei (Lamiaceae) lacking the typical lever mechanism. Plant Systematics & Evolution 257: 133–146.Google Scholar
  82. Western, T. L. 2012. The sticky tale of seed coat mucilages: production, genetics, and role in seed germination and dispersal. Seed Science Research 22: 1–25.Google Scholar
  83. Willson, M. F. & A. Traveset. 2000. The ecology of seed dispersal, pp. 85–110, in Fenner, M. (ed.). Seeds: The Ecology of Regeneration in Plant Communities, 2nd ed. CAB International.Google Scholar
  84. Yang, X., C. C. Baskin, J. M. Basking, G. Liu, & Z. Huang. 2012a. Seed mucilage improves seedling emergence of a sand desert shrub. PLoS ONE 7: e34597. doi:10.1371/journal.pone.0034597
  85. Yang, X., J. M. Baskin, C. C. Baskin & Z. Huang. 2012b. More than just a coating: Ecological importance, taxonomic occurrence and phylogenetic relationships of seed coat mucilage. Perspectives in Plant Ecology, Evolution and Systematics 14: 434–442.Google Scholar
  86. Zamora, R. & L. Matías. 2014. Seed dispersers, seed predators, and browsers act synergistically as biotic filters in a mosaic landscape. PLoS ONE 9: e107385. doi:10.1371/journal.pone.0107385.
  87. Zona, S., T. Clase & A. Franck. 2011. A synopsis of Salvia section Wrightiana (Lamiaceae). Harvard Papers in Botany 16: 383–388.Google Scholar
  88. Zona, S., B. Jestrow, K. Finch & T. Clase. 2016. A synopsis of Salvia sect. Gardoquiiflorae (Lamiaceae), with a note on the origins of Caribbean Salvia species. Phytotaxa 255: 214–226.Google Scholar

Copyright information

© The New York Botanical Garden 2017

Authors and Affiliations

  1. 1.Department of Biological Sciences & International Center for Tropical BotanyFlorida International UniversityMiamiUSA

Personalised recommendations