Skip to main content
Log in

Histones and Plant Hormones: New Evidence for an Interesting Interplay

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

As any living organism, plants have to respond to a wide variety of biotic and abiotic signals. One of the most important challenges for the plant cell is the response to plant hormones, compounds that regulate almost all aspects of plant development. This process involves the appropriate alteration of chromatin structure and function which can be facilitated by a number of different mechanisms, including histone covalent modifications, incorporation of distinct histone variants, chromatin remodeling and epigenetic regulation of gene expression. On the other hand, distinct chromatin states may in turn influence plant hormone biosynthesis and signaling. This article aims to review the evidence accumulated the last years concerning the effect of the major plant hormones - auxin, gibberellins, cytokinins, ethylene, abscisic acid, brassinosteroids and jasmonic acid - signaling on histone variants and modification pattern and to discuss the interplay between histones and hormones at plant chromatin.

Résumé

Comme tout organisme vivant, les plantes doivent répondre à une grande variété de signaux biotiques et abiotiques. L’un des défis les plus importants pour la cellule végétale est la réponse aux hormones végétales, des composés qui régulent presque tous les aspects du développement des plantes. Ce processus implique la modification appropriée de la structure et la fonction de la chromatine, qui est facilitée par plusieurs mécanismes différents, y compris les modifications covalentes des histones, l’incorporation de différents variants d’histones, le remodelage de la chromatine et la régulation épigénétique de l’expression des gènes. D’autre part, les états chromatiniens distincts peuvent à leur tour influencer la biosynthèse et la signalisation des hormones végétales. Cet article vise à examiner les preuves accumulées pendant les dernières années concernant l’effet de la signalisation des hormones végétales majeures – l’auxine, les gibbérellines, les cytokinines, l’éthylène, l’acide abscissique, les brassinostéroïdes et l’acide jasmonique - sur les variants d’histones et le motif de modification et discuter l’interaction entre les histones et les hormones à la chromatine des plantes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Literature Cited

  • Ahmad, K. & S. Henikoff. 2002. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Proceedings of National Academy of Science USA 99: 16477–16484.

    CAS  Google Scholar 

  • Aichinger, E., C. B. Villar, R. Di Mambro, S. Sabatini & C. Köhler. 2011. The CHD3 chromatin remodeler PICKLE and polycomb group proteins antagonistically regulate meristem activity in the Arabidopsis root. Plant Cell 23: 1047–1060.

    PubMed  CAS  Google Scholar 

  • Alvarez-Venegas, R., A. A. Abdallat, M. Guo, J. R. Alfano & Z. Avramova. 2007. Epigenetic control of a transcription factor at the cross section of two antagonistic pathways. Epigenetics 2: 106–113.

    PubMed  Google Scholar 

  • Anzola, J. M., T. Sieberer, M. Ortbauer, H. Butt, B. Korbei, I. Weinhofer, A. E. Müllner & C. Luschnig. 2010. Putative Arabidopsis transcriptional adaptor protein (PROPORZ1) is required to modulate histone acetylation in response to auxin. Proceedings of National Academy of Science USA 107: 10308–10313.

    CAS  Google Scholar 

  • Aoyama, T. & A. Oka. 2003. Cytokinin signal transduction in plant cells. Journal of Plant Research 116: 221–231.

    PubMed  CAS  Google Scholar 

  • Ascenzi, R. & J. S. Gantt. 1997. A drought-stress-inducible histone gene in Arabidopsis thaliana is a member of a distinct class of plant linker histone variants. Plant Molecular Biology 34: 629–641.

    PubMed  CAS  Google Scholar 

  • ——— & ———. 1999. Molecular genetic analysis of the drought-inducible linker histone variant in Arabidopsis thaliana. Plant Molecular Biology 41: 159–169.

    PubMed  CAS  Google Scholar 

  • Bartrina, I., E. Otto, M. Stmad, T. Werner & T. Schmülling. 2011. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 23: 69–80.

    PubMed  CAS  Google Scholar 

  • Berger, S. L. 2001. An embarrassment of niches: the many covalent modifications of histones in transcriptional regulation. Oncogene 20: 3007–3013.

    PubMed  CAS  Google Scholar 

  • Bergmüller, E., P. M. Gehrig & W. Gruissem. 2007. Characterization of post-translational modifications of histone H2B-variants isolated from Arabidopsis thaliana. Journal of Proteome Research 6: 3655–3668.

    PubMed  Google Scholar 

  • Berr, A., E. J. McCallum, A. Alioua, D. Heintz, T. Heitz & W. H. Shen. 2010. Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi. Plant Physiology 154: 1403–1414.

    PubMed  CAS  Google Scholar 

  • Bird, A. 2007. Perceptions of epigenetics. Nature 447: 396–398.

    PubMed  CAS  Google Scholar 

  • Bishop, G. J. & C. Koncz. 2002. Brassinosteroids and plant steroid hormone signaling. Plant Cell 14: 97–110.

    Google Scholar 

  • Bond, D. M., E. S. Dennis, B. J. Pogson & E. J. Finnegan. 2009. Histone acetylation, VERNALIZATION INSENSITIVE 3, FLOWERING LOCUS C, and the vernalization response. Molecular Plant 2: 724–737.

    PubMed  CAS  Google Scholar 

  • Bouyer, D., F. Roudier, M. Heese, E. D. Andersen, D. Gey, M. K. Nowack, J. Goodrich, J. P. Renou, P. E. Grini, V. Colot & A. Schnittger. 2011. Polycomb repressive complex 2 controls the embryo-to-seedling phase transition. PLoS Genetics 7: e1002014.

    PubMed  CAS  Google Scholar 

  • Brandt, W. F., J. de Andrade Rodrigues & C. von Holt. 1988. The amino acid sequence of wheat histone H2B(2). A core histone with a novel repetitive N-terminal extension. European Journal of Biochemistry 173: 547–554.

    PubMed  CAS  Google Scholar 

  • Bratzel, F., G. López-Torrejón, M. Koch, J. C. Del Pozo & M. Calonje. 2010. Keeping cell identity in Arabidopsis requires PRC1 RING-finger homologs that catalyze H2A monoubiquitination. Current Biology 20: 1853–1859.

    PubMed  CAS  Google Scholar 

  • Brown, D. T. 2001. Histone variants: are they functionally heterogenous? Genome Biology 2: 1–6.

    Google Scholar 

  • Cao, Y., Y. Dai, S. Cui & L. Ma. 2008. Histone H2B monoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis. Plant Cell 20: 2586–2602.

    PubMed  CAS  Google Scholar 

  • Chen, L. T., M. Luo, Y. Y. Wang & K. Wu. 2010. Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. Journal of Experimental Botany 61: 3345–3353.

    PubMed  CAS  Google Scholar 

  • Chen, Y. F., N. Etheridge & G. E. Schaller. 2005. Ethylene signal transduction. Annals of Botany 95: 901–915.

    PubMed  CAS  Google Scholar 

  • Cheong, C. 2003. Methyl jasmonate as a vital substance in plants. Trends in Genetics 19: 409–413.

    PubMed  CAS  Google Scholar 

  • Chinnusamy, V., Z. Gong & J. K. Zhu. 2008. Abscisic acid-mediated epigenetic processes in plant development and stress responses. Journal of Integrational Plant Biology 50: 1187–1195.

    CAS  Google Scholar 

  • Chow, B. & P. McCourt. 2004. Hormone signalling from a developmenatl context. Journal of Experimental Botany 55: 247–251.

    PubMed  CAS  Google Scholar 

  • Cooper, J. L. & S. Henikoff. 2004. Adaptive evolution of the histone fold domain in centromeric histones. Molecular Biology and Evolution 21: 1712–1718.

    PubMed  CAS  Google Scholar 

  • Cui, H. & P. N. Benfey. 2009. Interplay between SCARECROW, GA and LIKE HETEROCHROMATIN PROTEIN 1 in ground tissue patterning in the Arabidopsis root. Plant Journal 58: 1016–1027.

    PubMed  CAS  Google Scholar 

  • Deal, R. B., C. N. Topp, E. C. McKinney & R. B. Meagher. 2007. Repression of flowering in Arabidopsis requires activation of FLOWERING LOCUS C expression by the histone variant H2A.Z. Plant Cell 19: 74–83.

    PubMed  CAS  Google Scholar 

  • Demetriou, K., A. Kapazoglou, A. Tondelli, E. Francia, M. A. Stanca, K. Bladenopoulos & A. S. Tsaftaris. 2009. Epigenetic chromatin modifiers in barley: I. Cloning, mapping and expression analysis of the plant specific HD2 family of histone deacetylases from barley, during seed development and after hormonal treatment. Physiologia Plantarum 136: 358–368.

    PubMed  CAS  Google Scholar 

  • Ding, Y., Z. Avramova & M. Fromm. 2011. The Arabidopsis trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways. Plant Journal 66: 735–744.

    PubMed  CAS  Google Scholar 

  • Effendi, Y. & G. F. Scherer. 2011. Auxin binding-protein1 (ABP1), a receptor to regulate auxin transport and early auxin genes in an interlocking system with PIN proteins and the receptor TIR1. Plant Signaling and Behavior 6: 1101–1103.

    PubMed  CAS  Google Scholar 

  • Farmer, E. E. 2007. Plant biology: Jasmonate perception machines. Nature 448: 659–660.

    PubMed  CAS  Google Scholar 

  • Fukaki, H., N. Taniguchi & M. Tasaka. 2006. PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation. Plant Journal 48: 380–389.

    PubMed  CAS  Google Scholar 

  • Furuta, K., M. Kubo, K. Sano, T. Demura, H. Fukuda, Y. G. Liu, D. Shibata & T. Kakimoto. 2011. The CKH2/PKL chromatin remodeling factor negatively regulates cytokinin responses in Arabidopsis calli. Plant Cell Physiology 52: 618–628.

    PubMed  CAS  Google Scholar 

  • Guo, H. & J. R. Ecker. 2004. The ethylene signaling pathway: new insights. Current Opinion in Plant Biology 7: 40–49.

    PubMed  CAS  Google Scholar 

  • Guo, J., X. Yang, D. J. Weston & J. G. Chen. 2011. Abscisic acid receptors: past, present and future. Journal of Integrative Plant Biology 53: 469–479.

    PubMed  CAS  Google Scholar 

  • Gutiérrez, R., F. Quiroz-Figueroa & J. M. Vázquez-Ramos. 2005. Maize cyclin D2 expression, associated kinase activity and effect of phytohormones during germination. Plant Cell Physiology 46: 166–173.

    PubMed  Google Scholar 

  • Henderson, J. T., H. C. Li, S. D. Rider, A. P. Mordhorst, J. Romero-Severson, J. C. Cheng, J. Robey, Z. R. Sung, S. C. de Vries & J. Ogas. 2004. PICKLE acts throughout the plant to repress expression of embryonic traits and may play a role in gibberellin-dependent responses. Plant Physiology 134: 995–1005.

    PubMed  CAS  Google Scholar 

  • Hennig, L. & M. Derkacheva. 2009. Diversity of Polycomb group complexes in plants: same rules, different players? Trends in Genetics 25: 414–423.

    PubMed  CAS  Google Scholar 

  • Himmelbach, A., Y. Yang & E. Grill. 2003. Relay and control of abscisic acid signaling. Current Opinion in Plant Biology 6: 470–479.

    PubMed  CAS  Google Scholar 

  • Hirsch, C. D., Y. Wu, H. Yan & J. Jiang. 2009. Lineage-specific adaptive evolution of the centromeric protein CENH3 in diploid and allotetraploid Oryza species. Molecular Biology and Evolution 26: 2877–2885.

    PubMed  CAS  Google Scholar 

  • Houben, A., D. Demidov, A. D. Caperta, R. Karimi, F. Agueci & L. Vlasenko. 2007. Phosphorylation of histone H3 in plants–a dynamic affair. Biochimica et Biophysica Acta 1769: 308–315.

    PubMed  CAS  Google Scholar 

  • ———, T. Wako, R. Furushima-Shimogawara, G. Presting, G. Kunzel, I. Schubert & K. Fukui. 1999. Short communication: the cell cycle dependent phosphorylation of histone H3 is correlated with the condensation of plant mitotic chromosomes. Plant Journal 18: 675–679.

    PubMed  CAS  Google Scholar 

  • Huh, G. H., T. Nakayama, T. Meshi & M. Iwabuchi. 1997. Structural characteristics of two wheat histone H2A genes encoding distinct types of variants and functional differences in their promoter activity. Plant Molecular Biology 33: 791–802.

    PubMed  CAS  Google Scholar 

  • Jackson, J. P., L. Johnson, Z. Jasencakova, X. Zhang, L. Perez Burgos, P. B. Singh, X. Cheng, I. Schubert, T. Jenuwein & S. E. Jacobsen. 2004. Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma 112: 308–315.

    PubMed  CAS  Google Scholar 

  • Jasencakova, Z., A. Meister, J. Walter, B. M. Turner & I. Schubert. 2000. Histone H4 acetylation of euchromatin and heterochromatin is cell cycle dependent and correlated with replication rather than with transcription. Plant Cell 12: 2087–2100.

    PubMed  CAS  Google Scholar 

  • Jiang, D., N. C. Kong, X. Gu, Z. Li & Y. He. 2011. Arabidopsis COMPASS-like complexes mediate histone H3 lysine-4 trimethylation to control floral transition and plant development. PLoS Genetics 7: e1001330.

    PubMed  CAS  Google Scholar 

  • Joanin, P., C. Gigot & G. Philipps. 1992. Nucleotide sequence and expression of two histone H2B variants of maize. Plant Molecular Biology 20: 581–588.

    PubMed  CAS  Google Scholar 

  • Kapazoglou, A., A. Tondelli, D. Papaefthimiou, H. Ampatzidou, E. Francia, M. A. Stanca, K. Bladenopoulos & A. S. Tsaftaris. 2010. Epigenetic chromatin modifiers in barley: IV. The study of barley polycomb group (PcG) genes during seed development and in response to external ABA. BMC Plant Biology 10: 73.

    PubMed  Google Scholar 

  • Kaszas, E. & W. Z. Cande. 2000. Phosphorylation of histone H3 is correlated with changes in the maintenance of sister chromatin cohesion during meiosis in maize, rather than the condensation of the chromatin. Journal of Cell Science 113: 3217–3226.

    PubMed  CAS  Google Scholar 

  • Kim, S. A., H. J. Kwak, M. C. Park & S. R. Kim. 1998. Induction of reproductive organ-preferential histone genes by wounding or methyl jasmonate. Molecules and Cells 8: 669–677.

    PubMed  CAS  Google Scholar 

  • Koornneef, A. & C. M. J. Pieterse. 2008. Cross talk in defense signaling. Plant Physiology 146: 839–844.

    PubMed  CAS  Google Scholar 

  • Krichevsky, A., A. Zaltsman, S. V. Kozlovsky, G. W. Tian & V. Citovsky. 2009. Regulation of root elongation by histone acetylation in Arabidopsis. Journal of Molecular Biology 385: 45–50.

    PubMed  CAS  Google Scholar 

  • Kumar, D. & D. F. Klessig. 2003. High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proceedings of National Academy of Science USA 100: 16101–16106.

    CAS  Google Scholar 

  • Kwon, C. S., C. Chen & D. Wagner. 2005. WUSCHEL is a primary target for transcriptional regulation by SPLAYED in dynamic control of stem cell fate in Arabidopsis. Genes & Development 19: 992–1003.

    CAS  Google Scholar 

  • Lafos, M., P. Kroll, M. L. Hohenstatt, F. L. Thorpe, O. Clarenz & D. Schubert. 2011. Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation. PLoS Genetics 7: e1002040.

    PubMed  CAS  Google Scholar 

  • Li, W., H. Liu, Z. J. Cheng, Y. H. Su, H. N. Han, Y. Zhang & X. S. Zhang. 2011a. DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling. PLoS Genetics 7(8): e1002243.

    PubMed  CAS  Google Scholar 

  • ———, Z. Wang, J. Li, H. Yang, S. Cui, X. Wang & L. Ma. 2011b. Overexpression of AtBMI1C, a polycomb group protein gene, accelerates flowering in Arabidopsis. PLoS One 6: e21364.

    PubMed  CAS  Google Scholar 

  • Liu, Z. Q., J. Gao, A. W. Dong & W. H. Shen. 2009. A truncated Arabidopsis NUCLEOSOME ASSEMBLY PROTEIN 1, AtNAP1;3T, alters plant growth responses to abscisic acid and salt in the Atnap1;3-2 mutant. Molecular Plant 2: 688–699.

    PubMed  CAS  Google Scholar 

  • Loidl, P. 2004. A plant dialect of the histone language. Trends in Plant Science 9: 84–90.

    PubMed  CAS  Google Scholar 

  • Lu, H. 2009. Dissection of salicylic acid-mediated defense signaling networks. Plant Signaling & Behavior 4: 713–717.

    CAS  Google Scholar 

  • McCourt, P. & R. Creelman. 2008. The ABA receptors: we report you decide. Current Opinion in Plant Biology 11: 474–478.

    PubMed  CAS  Google Scholar 

  • Meijón, M., M. J. Cañal, L. Valledor, R. Rodríguez & I. Feito. 2011. Epigenetic and physiological effects of gibberellin inhibitors and chemical pruners on the floral transition of azalea. Physiologia Plantarum 141: 276–288.

    PubMed  Google Scholar 

  • ———, L. Valledor, E. Santamaría, P. S. Testillano, M. C. Risueño, R. Rodríguez, I. Feito & M. J. Cañal. 2009. Epigenetic characterization of the vegetative and floral stages of azalea buds: Dynamics of DNA methylation and histone H4 acetylation. Journal of Plant Physiology 166: 1624–1636.

    PubMed  Google Scholar 

  • Nelissen, H., S. De Groeve, D. Fleury, P. Neyt, L. Bruno, M. B. Bitonti, F. Vandenbussche, D. van der Straeten, T. Yamaguchi, H. Tsukaya, E. Witters, G. De Jaeger, A. Houben & M. van Lijsebettens. 2010. Plant Elongator regulates auxin-related genes during RNA polymerase II transcription elongation. Proceedings of National Academy of Science USA 107: 1678–1683.

    CAS  Google Scholar 

  • Ng, D. W., M. B. Chandrasekharan & T. C. Hall. 2006. Ordered histone modifications are associated with transcriptional poising and activation of the phaseolin promoter. Plant Cell 18: 119–132.

    PubMed  CAS  Google Scholar 

  • Nowak, S. J. & V. G. Corces. 2004. Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends in Genetics 20: 214–220.

    PubMed  CAS  Google Scholar 

  • Ogas, J., S. Kaufmann, J. Henderson & C. Somerville. 1999. PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proceedings of National Academy of Science USA 96: 13839–13844.

    CAS  Google Scholar 

  • Okada, T., M. Endo, M. B. Singh & P. L. Bhalla. 2005. Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3. Plant Journal 44: 557–568.

    PubMed  CAS  Google Scholar 

  • Paciorek, T. & J. Friml. 2006. Auxin signaling. Journal of Cell Science 119: 1199–1202.

    PubMed  CAS  Google Scholar 

  • Papaefthimiou, D., E. Likotrafiti, A. Kapazoglou, K. Bladenopoulos & A. Tsaftaris. 2010. Epigenetic chromatin modifiers in barley: III. Isolation and characterization of the barley GNAT-MYST family of histone acetyltransferases and responses to exogenous ABA. Plant Physiology and Biochemistry 48: 98–107.

    PubMed  CAS  Google Scholar 

  • Pavangadkar, K., M. F. Thomashow & S. J. Triezenberg. 2010. Histone dynamics and roles of histone acetyltransferases during cold-induced gene regulation in Arabidopsis. Plant Molecular Biology 74: 183–200.

    PubMed  CAS  Google Scholar 

  • Perelli, S., L. Moubayidin & S. Sabatini. 2010. The molecular basis of cytokinin function. Current Opinion in Plant Biology 13: 21–26.

    Google Scholar 

  • Perruc, E., N. Kinoshita & L. Lopez-Molina. 2007. The role of chromatin-remodeling factor PKL in balancing osmotic stress responses during Arabidopsis seed germination. Plant Journal 52: 927–936.

    PubMed  CAS  Google Scholar 

  • Przewloka, M. R., A. T. Wierzbicki, J. Slusarczyk, M. Kuraś, K. D. Grasser, C. Stemmer & A. Jerzmanowski. 2002. The “drought-inducible” histone H1s of tobacco play no role in male sterility linked to alterations in H1 variants. Planta 215: 371–379.

    PubMed  CAS  Google Scholar 

  • Redon, C., D. Pilch, E. Rogakou, O. Sedelnikova, K. Newrock & W. Bonner. 2002. Histone H2A variants H2A.X and H2A.Z. Current Opinion in Genetics and Development 12: 162–169.

    PubMed  CAS  Google Scholar 

  • Ríos, G., A. P. Gagete, J. Castillo, A. Berbel, L. Franco & M. I. Rodrigo. 2007. Abscisic acid and desiccation-dependent expression of a novel putative SNF5-type chromatin-remodeling gene in Pisum sativum. Plant Physiology Biochemistry 45: 427–435.

    PubMed  Google Scholar 

  • Rizzardi, K., K. Landberg, L. Nilsson, K. Ljung & A. Sundås-Larsson. 2011. TFL2/LHP1 is involved in auxin biosynthesis through positive regulation of YUCCA genes. Plant Journal 65: 897–906.

    PubMed  CAS  Google Scholar 

  • Rybaczek, D. & J. Maszewski. 2007. Phosphorylation of H2AX histones in response to double-strand breaks and induction of premature chromatin condensation in hydroxyurea-treated root meristem cells of Raphanus sativus, Vicia faba, and Allium porrum. Protoplasma 230: 31–39.

    PubMed  CAS  Google Scholar 

  • Saez, A., A. Rodrigues, J. Santiago, S. Rubio & P. L. Rodriguez. 2008. HAB1-SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis. Plant Cell 20: 2972–2988.

    PubMed  CAS  Google Scholar 

  • Sánchez Mde, L., S. H. Gurusinghe, K. J. Bradford & J. M. Vázquez-Ramos. 2005. Differential response of PCNA and Cdk-A proteins and associated kinase activities to benzyladenine and abscisic acid during maize seed germination. Journal of Experimental Botany 56: 515–523.

    PubMed  Google Scholar 

  • Sanei, M., R. Pickering, K. Kumke, S. Nasuda & A. Houben. 2011. Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proceedings of National Academy of Science U S A 108: 498–505.

    Google Scholar 

  • Santner, A. & M. Estelle. 2009. Recent advances and emerging trends in plant hormone signalling. Nature 459: 1071–1078.

    PubMed  CAS  Google Scholar 

  • Sauter, M., S. L. Mekhedov & H. Kende. 1995. Gibberellin promotes histone H1 kinase activity and the expression of cdc2 and cyclin genes during the induction of rapid growth in deepwater rice internodes. Plant Journal 7: 623–632.

    PubMed  CAS  Google Scholar 

  • Schwechheimer, C. & B. C. Willige. 2009. Shedding light on gibberellic acid signalling. Current Opinion in Plant Biology 12: 57–62.

    PubMed  CAS  Google Scholar 

  • Scippa, G. S., M. Di Michele, E. Onelli, G. Patrignani, D. Chiatante & E. A. Bray. 2004. The histone-like protein H1-S and the response of tomato leaves to water deficit. Journal of Experimental Botany 55: 99–109.

    PubMed  CAS  Google Scholar 

  • ———, A. Griffiths, D. Chiatante & E. A. Bray. 2000. The H1 histone variant of tomato, H1-S, is targeted to the nucleus and accumulates in chromatin in response to water-deficit stress. Planta 211: 173–181.

    PubMed  CAS  Google Scholar 

  • Sokol, A., A. Kwiatkowska, A. Jerzmanowski & M. Prymakowska-Bosak. 2007. Up-regulation of stress-inducible genes in tobacco and Arabidopsis cells in response to abiotic stresses and ABA treatment correlates with dynamic changes in histone H3 and H4 modifications. Planta 227: 245–254.

    PubMed  CAS  Google Scholar 

  • Song, C. P., M. Agarwal, M. Ohta, Y. Guo, U. Halfter, P. Wang & J. K. Zhu. 2005. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17: 2384–2396.

    PubMed  CAS  Google Scholar 

  • Spencer, V. A. & J. R. Davie. 1999. Role of covalent modifications of histones in regulating gene expression. Gene 240: 1–12.

    PubMed  CAS  Google Scholar 

  • Srebreva, L., M. Iosifidu, K. Chimshirova & J. Zlatanova. 1989. Occurrence of histone H10-related fraction in differentiated maize roots. Biochimica et Biophysica Acta 1008: 346–350.

    CAS  Google Scholar 

  • Sridha, S. & K. Wu. 2006. Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant Journal 46: 124–133.

    PubMed  CAS  Google Scholar 

  • Sridhar, V. V., A. Kapoor, K. Zhang, J. Zhu, T. Zhou, P. M. Hasegawa, R. A. Bressan & J. K. Zhu. 2007. Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature 447: 735–738.

    PubMed  CAS  Google Scholar 

  • Strahl, B. D. & C. D. Allis. 2000. The language of covalent histone modifications. Nature 403: 41–45.

    PubMed  CAS  Google Scholar 

  • Su, Y. H., X. Y. Zhao, Y. B. Liu, C. L. Zhang, S. D. O’Neill & X. S. Zhang. 2009. Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant Journal 59: 448–460.

    PubMed  CAS  Google Scholar 

  • Sui, P., J. Jin, S. Ye, C. Mu, J. Gao, H. Feng, W. H. Shen, Y. Yu & A. Dong. 2011. H3K36 methylation is critical for brassinosteroid-regulated plant growth and development in rice. Plant Journal. doi:10.1111/j.1365-313X.2011.04873.x. Epub ahead of print.

    Google Scholar 

  • Swiatek, A., M. Lenjou, D. Van Bockstaele, D. Inzé & H. Van Onckelen. 2002. Differential effect of jasmonic acid and abscisic acid on cell cycle progression in tobacco BY-2 cells. Plant Physiology 128: 201–211.

    PubMed  CAS  Google Scholar 

  • Talbert, P. B., R. Masuelli, A. P. Tyagi, L. Comai & S. Henikoff. 2002. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14: 1053–1066.

    PubMed  CAS  Google Scholar 

  • Tanaka, I., Y. Akahori, K. Gomi, T. Suzuki & K. Ueda. 1999. A novel histone variant localized in nucleoli of higher plant cells. Chromosoma 108: 190–199.

    PubMed  CAS  Google Scholar 

  • Thomas, S. G. & T. P. Sun. 2004. Update on gibberellin signaling. A tale of the tall and the short. Plant Physiology 135: 668–676.

    PubMed  CAS  Google Scholar 

  • Turck, F., F. Roudier, S. Farrona, M. L. Martin-Magniette, E. Guillaume, N. Buisine, S. Gagnot, R. A. Martienssen, G. Coupland & V. Colot. 2007. Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genetics 3: e86.

    PubMed  Google Scholar 

  • Umezawa, T., K. Nakashima, T. Miyakawa, T. Kuromori, M. Tanokura, K. Shinozaki & K. Yamaguchi-Shinozaki. 2010. Molecular basis of the core regulatory network in ABA responses: Sensing, signaling and transport. Plant & Cell Physiology 51: 1821–1839.

    CAS  Google Scholar 

  • van den Heuvel, K. L., R. J. van Esch, G. W. Barendse & G. J. Wullems. 1999. Isolation and molecular characterization of gibberellin-regulated H1 and H2B histone cDNAs in the leaf of the gibberellin-deficient tomato. Plant Molecular Biology 39: 883–890.

    PubMed  Google Scholar 

  • van der Knaap, E. & H. Kende. 1995. Identification of a gibberellin-induced gene in deepwater rice using differential display of mRNA. Plant Molecular Biology 28: 589–592.

    PubMed  Google Scholar 

  • Viestra, R. D. 2009. The ubiquitin-26S proteasome system at the nexus of plant biology. Nature Reviews Molecular Cell Biology 10: 385–397.

    Google Scholar 

  • Walley, J. W., H. C. Rowe, Y. Xiao, E. W. Chehab, D. J. Kliebenstein, D. Wagner & K. Dehesh. 2008. The chromatin remodeler SPLAYED regulates specific stress signaling pathways. PLoS Pathogens 4: e1000237.

    PubMed  Google Scholar 

  • Wang, D., N. Amornsiripanitch & X. Dong. 2006. A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathogens 2: 123.

    Google Scholar 

  • Wang, H., Q. Qi, P. Schorr, A. J. Cutler, W. L. Crosby & L. C. Fowke. 1998. ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant Journal 15: 501–510.

    PubMed  Google Scholar 

  • Wang, X., U. Kota, K. He, K. Blackburn, J. Li, M. B. Goshe, S. C. Huber & S. D. Clouse. 2008. Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Developmental Cell 15: 220–235.

    PubMed  CAS  Google Scholar 

  • ———, Y. Zhang, Q. Ma, Z. Zhang, Y. Xue, S. Bao & K. Chong. 2007. SKB1-mediated symmetric dimethylation of histone H4R3 controls flowering time in Arabidopsis. EMBO Journal 26: 1934–1941.

    PubMed  CAS  Google Scholar 

  • Wang, Y. H. & H. R. Irving. 2011. Developing a model of plant hormone interactions. Plant Signaling & Behavior 6: 494–500.

    CAS  Google Scholar 

  • Washio, K. & M. Morikawa. 2006. Common mechanisms regulating expression of rice aleurone genes that contribute to the primary response for gibberellin. Biochimica et Biophysica Acta 1759: 478–490.

    PubMed  CAS  Google Scholar 

  • Waterborg, J. H. 1991. Multiplicity of histone h3 variants in wheat, barley, rice, and maize. Plant Physiology 96: 453–458.

    PubMed  CAS  Google Scholar 

  • ——— & A. J. Robertson. 1996. Common features of analogous replacement histone H3 genes in animals and plants. Journal of Molecular Evolution 43: 194–206.

    PubMed  CAS  Google Scholar 

  • ———, I. Winicov & R. E. Harrington. 1987. Histone variants and acetylated species from the alfalfa plant Medicago sativa. Archives of Biochemistry and Biophysics 256: 167–178.

    PubMed  CAS  Google Scholar 

  • Wei, T. & M. A. O’Connell. 1996. Structure and characterization of a putative drought-inducible H1 histone gene. Plant Molecular Biology 30: 255–268.

    PubMed  CAS  Google Scholar 

  • Wolffe, A. P. & D. Guschin. 2000. Chromatin structural features and targets that regulate transcription. Journal of Structural Biology 129: 102–122.

    PubMed  CAS  Google Scholar 

  • Wu, K., L. Zhang, C. Zhou, C. W. Yu & V. Chaikam. 2008. HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. Journal of Experimental Botany 59: 225–234.

    PubMed  CAS  Google Scholar 

  • Xu, C. R., C. Liu, Y. L. Wang, L. C. Li, W. Q. Chen, Z. H. Xu & S. N. Bai. 2005. Histone acetylation affects expression of cellular patterning genes in the Arabidopsis root epidermis. Proceedings of National Academy of Science USA 102: 14469–14474.

    CAS  Google Scholar 

  • Yan, D., Y. Zhang, L. Niu, Y. Yuan & X. Cao. 2007. Identification and characterization of two closely related histone H4 arginine 3 methyltransferases in Arabidopsis thaliana. Biochemistry Journal 408: 113–121.

    CAS  Google Scholar 

  • Yu, X., L. Li, L. Li, M. Guo, J. Chory & Y. Yin. 2008. Modulation of brassinosteroid-regulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proceedings of National Academy of Science USA 105: 7618–7623.

    CAS  Google Scholar 

  • Zhang, C. C., W. Y. Yuan & Q. F. Zhang. 2011. RPL1, a gene involved in epigenetic processes regulates phenotypic plasticity in rice. Molecular Plant. doi:10.1093/mp/ssr091. Epub ahead of print.

    Google Scholar 

  • Zhang, H., S. D. Rider, J. T. Henderson, M. Fountain, K. Chuang, V. Kandachar, A. Simons, H. J. Edenberg, J. Romero-Severson, W. M. Muir & J. Ogas. 2008. The CHD3 remodeler PICKLE promotes trimethylation of histone H3 lysine 27. Journal of Biological Chemistry 283: 22637–22648.

    PubMed  CAS  Google Scholar 

  • Zhang, K., D. S. Letham & P. C. John. 1996. Cytokinin controls the cell cycle at mitosis by stimulating the tyrosine dephosphorylation and activation of p34cdc2-like H1 histone kinase. Planta 200: 2–12.

    PubMed  CAS  Google Scholar 

  • Zhang, X., X. Li, J. B. Marshall, C. X. Zhong & R. K. Dawe. 2005. Phosphoserines on maize CENTROMERIC HISTONE H3 and histone H3 demarcate the centromere and pericentromere during chromosome segregation. Plant Cell 17: 572–583.

    PubMed  CAS  Google Scholar 

  • Zhou, C., L. Zhang, J. Duan, B. Miki & K. Wu. 2005. HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell 17: 1196–1204.

    PubMed  CAS  Google Scholar 

  • Zhou, X., D. Hua, Z. Chen, Z. Zhou & Z. Gong. 2009. Elongator mediates ABA responses, oxidative stress resistance and anthocyanin biosynthesis in Arabidopsis. Plant Journal 60: 79–90.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Alatzas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alatzas, A. Histones and Plant Hormones: New Evidence for an Interesting Interplay. Bot. Rev. 79, 317–341 (2013). https://doi.org/10.1007/s12229-013-9119-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-013-9119-6

Keywords

Navigation