The Botanical Review

, Volume 79, Issue 2, pp 147–177 | Cite as

Biology and Functional Ecology of Equisetum with Emphasis on the Giant Horsetails

  • Chad Husby


Horsetails are unique survivors of a very ancient group of vascular plants, the Sphenophyta, which has a history reaching back to the Upper Devonian. Despite the striking conservatism of Equisetum architecture and anatomy and the small number of species (15) in the modern flora, their ability to thrive under a wide range of conditions is remarkable. This is due to a diverse suite of adaptations that allow tolerance of disturbance, soil anoxia, high metals, and salinity, along with efficient nutrient uptake and nitrogen fixation. The giant horsetails represent the largest living Sphenophyta and provide insights into how their larger ancestors lived and how this ancient lineage has managed to survive in tropical regions.


Equisetum Pteridophyte Functional ecology Root biology Phylogeny Horsetails 



I would like to thank the late Dr. Warren H. Wagner, Jr. for his encouragement to pursue studies of Equisetum. I also thank Dr. Jack Fisher for suggesting the development of this manuscript.

Literature Cited

  1. Allen, L. H., Jr. 1977. Soil water and root development. Crop and Soil Science Society of Florida Proceedings 36:4–9.Google Scholar
  2. Allen, L. H. 1997. Mechanisms and rates of O2 transfer to and through submerged rhizomes and roots via aerenchyma. Soil and Crop Science Society of Florida Proceedings 56: 41–54.Google Scholar
  3. Álvarez de Zayas, A. 1982. Equisetum giganteum Linne: Su redescubrimiento en Cuba después de 20 años. Revista del Jardín Botánico Nacional (Cuba) 3: 3–12.Google Scholar
  4. Andersson, T. N. 1999a. Growth of field horsetails (Equisetum arvense) under low light and low nitrogen conditions. Weed Science 47: 41–46.Google Scholar
  5. ———. 1999b. Field horsetail (Equisetum arvense) - effects of potassium under different light and nitrogen conditions. Weed Science 47: 47-54.Google Scholar
  6. Armstrong, J. & W. Armstrong. 2009. Record rates of pressurized gas-flow in the great horsetail, Equisetum telmateia. Were Carboniferous Calamites similarly aerated? New Phytologist 184: 202–215.PubMedCrossRefGoogle Scholar
  7. ———, & ———. 2010. Reasons for the presence or absence of convective (pressurized) ventilation in the genus Equisetum. New Phytologist. 190: 387-397.PubMedCrossRefGoogle Scholar
  8. Auclair, A. N. D. 1979. Factors affecting tissue nutrient concentrations in a Scirpus-Equisetum wetland. Ecology 60: 337–348.CrossRefGoogle Scholar
  9. Ballesteros, D., E. Estrelles, C. Walters & A. M. Ibars. 2011. Effect of storage temperature on green spore longevity for the ferns Equisetum ramosissimum and Osmunda regalis. CryoLetters 32: 89–98.PubMedGoogle Scholar
  10. Barber, D. A. 1961. Gas exchange between Equisetum limosum and its environment. Journal of Experimental Botany 12: 243–251.CrossRefGoogle Scholar
  11. Beasleigh, W. J. & G. A. Yarranton. 1974. Ecological strategy and tactics of Equisetum sylvaticum during a postfire succession. Canadian Journal of Botany 52: 2299–2318.CrossRefGoogle Scholar
  12. Begu, D. & A. Araya. 2009. The horsetail Equisetum arvense mitochondria share two group I introns with the liverwort Marchantia, acquired a novel group II intron but lost intron-encoded ORFs. Current Genetics 55: 69–79.PubMedCrossRefGoogle Scholar
  13. Behrensmeyer, A. K., J. D. Damuth, W. A. Dimichele, R. Potts, H.-D. Sues & S. L. Wing (eds). 1992. Terrestrial Ecosystems Through Time: Evolutionary Paleoecology of Terrestrial Plants and Animals. The University of Chicago Press, Chicago, Illinois.Google Scholar
  14. Bell, A. D. & P. B. Tomlinson. 1980. Adaptive architecture in rhizomatous plants. Botanical Journal of the Linnean Society 80: 125–160.CrossRefGoogle Scholar
  15. Bennert, W., M. Lubienski, S. Körner & M. Steinberg. 2005. Triploidy in Equisetum subgenus Hippochaete (Equisetaceae, Pteridophyta). Annals of Botany 95: 807–815.Google Scholar
  16. Bierhorst, D. W. 1958. Vessels in Equisetum. American Journal of Botany 45: 534–537.CrossRefGoogle Scholar
  17. ———. 1971. Morphology of Vascular Plants. The Macmillan Company, New York.Google Scholar
  18. Bilderback, D. E. (ed). 1987. Mount St. Helens 1980, Botanical Consequences of the Explosive Eruptions. University of California Press Berkeley, California.Google Scholar
  19. Blom, C. W. P. M. & L. A. C. J. Voesenek. 1995. Flooding: the survival strategies of plants. Trends in Ecology and Evolution 11: 290–295.CrossRefGoogle Scholar
  20. Borg, P. J. V. 1971. Ecology of Equisetum palustre in Finland, with special reference to its role as a noxious weed. Annales Botanici Fennici 8: 93–141.Google Scholar
  21. Bower, F. O. 1908. The Origin of a Land Flora: A Theory Based Upon the Facts of Alteration. Macmillan and Co., London.CrossRefGoogle Scholar
  22. Brabrand, A. 1985. Food of roach (Rutilus rutilus) and ide (Leuciscus idus): Significance of diet shift for interspecific competition among omnivorous fish. Oecologia 66: 461–467.CrossRefGoogle Scholar
  23. Brooks, R. R., J. Holzbecher & D. E. Ryan. 1981. Horsetails (Equisetum) as indirect indicators of gold mineralization. Journal of Geochemical Exploration 16: 21–26.CrossRefGoogle Scholar
  24. Browne, I. M. P. 1920. Phylogenetic considerations in the intermodal vascular strands of Equisetum. New Phytologist 19: 11–25.CrossRefGoogle Scholar
  25. ———. 1922. Anatomy of Equisetum giganteum. Botanical Gazette 73:447-468.CrossRefGoogle Scholar
  26. ———. 1925. Structure of the rhizome of Equisetum giganteum. Botanical Gazette 80:48-62.CrossRefGoogle Scholar
  27. Brune, T., M. Thiv & K. Haas. 2008. Equisetum (Equisetaceae) species or hybrids? ISSR fingerprinting profiles help improve diagnoses based on morphology and anatomy. Plant Systematics and Evolution 274: 67–81.CrossRefGoogle Scholar
  28. Buchtein, O. 1887. Entwicklungsgeschichte des Prothallium von Equisetum. Bibl. Bot. 2: 1–49.Google Scholar
  29. Campbell, D. H. 1927. The Embryo of Equisetum debile, Roxb. Annals of Botany 42 (3): 717–728. 1927.Google Scholar
  30. ———. 1928. The Embryology of Equisetum debile Roxb. Proceedings of the National Academy of Sciences, USA. 13:554–555.CrossRefGoogle Scholar
  31. Cetto, A., H. Wiedenfeld, M. C. Revilla & I. A. Sergio. 2000. Hypoglycemic effect of Equisetum myriochaetum aerial parts on streptozotocin diabetic rats. Journal of Ethnopharmacology 72: 129–133.CrossRefGoogle Scholar
  32. Channing, A., A. Zamuner, D. Edwards & D. Guido. 2011. Equisetum thermale sp. nov. (Equisetales) from the Jurassic San Agustín hot spring deposit, Patagonia: Anatomy, paleoecology, and inferred paleoecophysiology.Google Scholar
  33. Chen, C.-H. & J. Lewin. 1969. Silicon as a nutrient element for Equisetum arvense. Canadian Journal of Botany 47: 125–131.CrossRefGoogle Scholar
  34. Cleal, C. J. & B. A. Thomas. 1999. Plant Fossils: The History of Land Vegetation. Boydell Press, Rochester, New York.Google Scholar
  35. Currie, H. A. & C. C. Perry. 2009. Chemical evidence for intrinsic ‘Si’ within Equisetum cell walls. Phytochemistry 70: 2089–2095.PubMedCrossRefGoogle Scholar
  36. David, R., U. Peters & H. W. Bennert. 1990. Some aspects of water relations of Equisetum telmateia (Equisetaceae: Pteridophyta). Fern Gazette 13: 329–340.Google Scholar
  37. Dayanandan, P. 1977. Stomata in Equisetum: A structural and functional study. Doctoral Dissertation (Botany). University of Michigan.Google Scholar
  38. Des Marais, D. L., A. R. Smith, D. M. Britton & K. M. Pryer. 2003. Phylogenetic relationships and evolution of extant horsetails based on chloroplast DNA sequence data (rbcl and trnL-F). International Journal of Plant Sciences 164: 737–751.CrossRefGoogle Scholar
  39. Dosdall, L. 1919. Water requirement and adaptation in Equisetum. The Plant World 22(1–13): 29–44.Google Scholar
  40. Drew, M. C. & J. M. Lynch. 1980. Soil anaerobiosis microorganisms and root function. Annual Review of Phytopathology 18: 37–66.CrossRefGoogle Scholar
  41. Duckett, J. G. 1979. An experimental study of the reproductive biology and hybridization in the European and North American species of Equisetum. Botanical Journal of the Linnean Society 79: 205–229.CrossRefGoogle Scholar
  42. ——— 1985. Wild gametophytes of Equisetum sylvaticum. American Fern Journal 75: 120–127.CrossRefGoogle Scholar
  43. ——— & A. R. Duckett. 1980. Reproductive biology and population dynamics of wild gametophytes in Equisetum. Botanical Journal of the Linnean Society 80: 1–40.CrossRefGoogle Scholar
  44. ——— & W. C. Pang. 1984. The orgins of heterospory: a comparative study of sexual behaviour in the fern Platyzoma microphyllum R. Br. and the horsetail Equisetum giganteum L. (Pteridophyta). Botanical Journal of the Linnean Society 88: 11–34.CrossRefGoogle Scholar
  45. Eggert, D. A. 1962. The ontogeny of Carboniferous arborescent Sphenopsida. Palaeontographica, ser. B, 110:99–127.Google Scholar
  46. Emison, W. B. & C. M. White. 1988. Foods and weights of the rock ptarmigan on Amchitka, Aleutian Islands, Alaska (USA). Great Basin Naturalist 48: 533–540.Google Scholar
  47. Epstein, E. 1999. Silicon. Annual Review of Plant Physiology and Plant Molecular Biology 50: 641–664.PubMedCrossRefGoogle Scholar
  48. Ernst, W. H. O. 1990. Ecophysiology of plants in waterlogged soil. Aquatic Botany 38: 73–90.CrossRefGoogle Scholar
  49. Fernández, N., M. I. Messuti & S. Fontenla. 2008. Arbuscular Mycorrhizas and Dark Septate Fungi in Lycopodium paniculatum (Lycopodiaceae) and Equisetum bogotense (Equisetaceae) in a Valdivian Temperate Forest of Patagonia, Argentina. American Fern Journal 98: 117–127.CrossRefGoogle Scholar
  50. Franks, P. & T. J. Brodribb. 2005. Stomatal control and water transport in the xylem. pp 69–89. In: N. M. Holbrook & M. A. Zwieniecki (eds). Vascular Transport in Plants. Elsevier Acadmeic Press, Amsterdam.CrossRefGoogle Scholar
  51. French, J. C. 1984. Occurrence of intercalary and uninterrupted meristems in Equisetum. American Journal of Botany 71: 1099–1103.CrossRefGoogle Scholar
  52. Fry, S. C., K. E. Mohler, B. H. W. A. Nesselrode & L. Frankova. 2008a. Mixed-linkage β -glucan: xyloglucan endotransglucosylase, a novel wall-remodelling enzyme from Equisetum (horsetails) and charophytic algae. The Plant Journal 55: 240–252.PubMedCrossRefGoogle Scholar
  53. ———, B. H. W. A. Nesselrode, J. G. Miller & B. R. Mewburn. 2008b. Mixed-linkage (1 → 3,1 → 4)-β-D-glucan is a major hemicellulose of Equisetum (horsetail) cell walls. New Phytologist. 179: 104–115.PubMedCrossRefGoogle Scholar
  54. Gastaldo, R. A. 1992. Regenerative growth in fossil horsetails following burial by alluvium. Historical Biology 6: 203–219.CrossRefGoogle Scholar
  55. Gierlinger, N., L. Sapei & O. Paris. 2008. Insights into the chemical composition of Equisetum hyemale by high resolution Raman imaging. Planta 227: 969–980.PubMedCrossRefGoogle Scholar
  56. Gifford, E. M., & A. S. Foster. 1989. Sphenophyta. Pages 175–207 in Morphology and Evolution of Vascular Plants. W. H. Freeman and Company, San Francisco.Google Scholar
  57. Golub, S. J. & R. H. Whetmore. 1948. Studies of development in the vegetative shoot of Equisetum arvense L. I. The shoot apex. American Journal of Botany 35: 755–767.CrossRefGoogle Scholar
  58. Gorzalczany, S., A. Rojo, R. Rondina, S. Debenedetti & C. Acevedo. 1999. Estudio de toxicidad aguda por vía oral de plantas medicinales Argentinas. Acta Farmacía Bonaerense 18: 221–224.Google Scholar
  59. Grable, A. R. 1966. Soil aeration and plant growth. Advances in Agronomy 18: 57–106.CrossRefGoogle Scholar
  60. Grant, T. A., P. Henson & J. A. Cooper. 1994. Feeding ecology of trumpeter swans breeding in central Alaska. Journal of Wildlife Management 58: 774–780.CrossRefGoogle Scholar
  61. Grosse, W., J. Frye & S. Lattermann. 1992. Root aeration in wetland trees by pressurized gas transport. Tree Physiology 10: 285–295.PubMedCrossRefGoogle Scholar
  62. Guillon, J.-M. 2004. Phylogeny of horsetails (Equisetum) based on the chloroplast rps4 gene and adjascent noncoding sequences. Systematic Botany 29: 251–259.CrossRefGoogle Scholar
  63. ——— 2007. Molecular phylogeny of horsetails (Equisetum) including chloroplast atpB sequences. Journal of Plant Research 120: 569–574.PubMedCrossRefGoogle Scholar
  64. Gutiérrez, R. M. P., G. Y. Laguna & A. Walkowski. 1985. Diuretic activity of Mexican Equisetum. Journal of Ethnopharmacology 14: 269–272.CrossRefGoogle Scholar
  65. Haught, O. 1944. Some conspicuous ferns of northern South America. American Fern Journal 34:101–106.Google Scholar
  66. Hauke, R. L. 1963. A taxonomic monograph of the genus Equisetum subgenus Hippochaete. Nova Hedwigia 8: 1–123.Google Scholar
  67. ——— 1967. Stalking the giant horsetail. Ward's Bulletin 6: 1–2.Google Scholar
  68. ——— 1968. Gametangia of Equisetum bogotense. Bulletin of the Torrey Botanical Club 95: 341–345.CrossRefGoogle Scholar
  69. ——— 1969a. Gametophyte development in Latin American horsetails. Bulletin of the Torrey Botanical Club 96: 568–577.CrossRefGoogle Scholar
  70. ——— 1969b. The natural history of Equisetum in Costa Rica. Revista de Biologia Tropical 15: 269–281.Google Scholar
  71. ——— 1978. A taxonomic monograph of Equisetum subgenus Equisetum. Nova Hedwigia 30: 385–455.Google Scholar
  72. ——— 1985. Gametophytes of Equisetum giganteum. American Fern Journal 75: 132.CrossRefGoogle Scholar
  73. ——— 1993. Equisetaceae. Pp. 76–84. In: Flora of North America Editorial Committee (Editors), Flora of North America: North of Mexico Volume 2: Pteridophytes and Gymnosperms. Oxford University Press, New York, NY.Google Scholar
  74. Hodson, M. J., P. J. White, A. Mead & M. R. Broadley. 2005. Phylogenetic variation in the silicon composition of plants. Annals of Botany 96: 1027–1046.PubMedCrossRefGoogle Scholar
  75. Hodson, E., F. Shahid & J. Basinger. 2009. Fungal endorhizal associates of Equisetum species form Western and Arctic Canada. Mycological Progress 8: 19–27.CrossRefGoogle Scholar
  76. Hoffman, F. M. & C. J. Hillson. 1979. Effects of silicon on the life cycle of Equisetum hyemale L. Botanical Gazette 140: 127–132.CrossRefGoogle Scholar
  77. Hofmeister, W. 1851. Vergleichende Untersuchungen zur Keimung, Entfaltung und Fruchtbildung höherer Kryptogamen. Engelmann, Leipzig.Google Scholar
  78. Holisova, V. 1976. The food eaten by the water vole Arvicola terrestris in gardens. Zoologicke Listy 25: 209–216.Google Scholar
  79. Hozhina, E. I., A. A. Khramov, P. A. Gerasimov & A. A. Kumarkov. 2001. Uptake of heavy metals, arsenic, and antimony by aquatic plants in the vicinity of ore mining and processing industries. Journal of Geochemical Exploration 74: 153–162.CrossRefGoogle Scholar
  80. Husby, C. E. 2009. Ecophysiology and biomechanics of Equisetum giganteum in South America. ProQuest ETD Collection for FIU. Paper AAI3380836.
  81. ———, J. Delatorre-Herrera, V. Oreste, S. F. Oberbauer, D. T. Palow, L. Novara & A. Grau. 2011. Salinity tolerance ecophysiology of Equisetum giganteum in South America; a study of eleven sites providing a natural gradient of salinity stress. AoB Plants. doi: 10.1093/aobpla/plr022.
  82. Huxley, A. 1975. Plant and Planet. Viking, New York.Google Scholar
  83. Hyvonen, T., A. Ojala, P. Kankaala & P. J. Martikainen. 1998. Methane release from stands of water horsetail (Equisetum fluviatile) in a boreal lake. Freshwater Biology 40: 275–284.CrossRefGoogle Scholar
  84. Jean, Y. & J. M. Bergeron. 1986. Can voles Microtus pennsylvanicus be poisoned by secondary metabolites of commonly eaten foods. Canadian Journal of Zoology 64: 158–162.CrossRefGoogle Scholar
  85. Johnson, M. A. 1936. Hydathodes in the genus Equisetum. Botanical Gazette 98: 598–608.CrossRefGoogle Scholar
  86. Judziewicz, E. J., L. G. Clark, X. Londoño & M. J. Stern. 1999. American Bamboos. Smithsonian Institution Press, Washignton, D.C.Google Scholar
  87. Karol, K. G., K. Arumuganathan, J. L. Boore, A. M. Duffy, K. D. Everett, J. D. Hall,, S. K. Hansen, J. V. Kuehl, D. F. Mandoli, B. D. Mishler, R. G. Olmstead, K. S. Renzaglia, & P. G. Wolf. 2010. Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages. BMC Evolutionary Biology. doi: 10.1186/1471-2148-10-321.
  88. Kaufman, P. B., W. C. Bigelow, R. Schmid & N. S. Ghosheh. 1971. Electron microscope analysis of silica in epidermal cells of Equisetum. American Journal of Botany 58: 309–316.CrossRefGoogle Scholar
  89. Kelber, K.-P. & J. H. A. van Konijnenburg-van Cittert. 1998. Equisetites arenaceus from the Upper Triassic of Germany with evidence for reporductive strategies. Reveiw of Palaeobotany and Palynology 100: 1–26.CrossRefGoogle Scholar
  90. Kludze, H. K. & R. D. DeLaune. 1995. Gaseous exchange and wetland plant response to soil redox intensity and capacity. Soil Science Society of America Journal 59: 939–945.CrossRefGoogle Scholar
  91. Knox, J. P. 2008. Mapping the walls of the kingdom: the view from the horsetails. New Phytologist 179: 1–3.PubMedCrossRefGoogle Scholar
  92. Koch, M. S. & J. A. Mendellsohn. 1989. Sulphide as a soil phytotoxin: differential responses in two marsh species. Journal of Ecology 77: 565–578.CrossRefGoogle Scholar
  93. Korpelainen, H. & M. Kolkkala. 1996. Genetic diversity and population structure in the outcrossing populations of Equisetum arvense and E. hyemale (Equisetaceae). American Journal of Botany 83: 58–62.CrossRefGoogle Scholar
  94. Koske, R. E., C. F. Friese, P. D. Olexia & R. L. Hauke. 1985. Vesicular-arbuscular mycorrhizas in Equisetum. Transactions of the British Mycological Society 85: 350–353.CrossRefGoogle Scholar
  95. Krahulec, F., L. Hrouda & M. Kovarova. 1996. Production of gametophytes by Hippochaete (Equisetaceae) hybrids. Preslia 67: 213–218.Google Scholar
  96. Kranz, H. D. & V. A. R. Huss. 1996. Molecular evolution of pteridophytes and their relationship to seed plants: Evidence from complete 18S rRNA gene sequences. Plant Systematics and Evolution 202: 1–11.CrossRefGoogle Scholar
  97. Lellinger, D. B. 1989. Equisetaceae. Pages 72–74 in The Ferns and Fern-allies of Costa Rica, Panama, and the Chocó (Part 1: Psilotaceae through Dicksoniaceae). American Fern Society, Inc., Washington, D. C.Google Scholar
  98. Leroux, O., J. P. Knox, B. Masschaele, A. Bagniewska-Zadworna, S. E. Marcus, M. Claeys, L. van Hoorebeke & R. L. L. Viane. 2011. An extension-rich matrix lines the carinal canals in Equisetum ramosissimum, which may function as water-conducting channels. Annals of Botany 108: 307–319.PubMedCrossRefGoogle Scholar
  99. Li, P., K. Matsunaga & Y. Ohizumi. 1999. Enhancement of the nerve growth factor-mediated neurite outgrowth from PC12D cells by Chinese and Paraguayan medicinal plants. Biological and Pharmaceutical Bulletin 22: 752–755.PubMedCrossRefGoogle Scholar
  100. Lubienski, M. 2010. A new hybrid horsetail Equisetum x lofotense (E. arvense x E. sylvaticum, Equisetaceae) from Norway. Nordic Journal of Botany 28: 530–540.CrossRefGoogle Scholar
  101. ———, H. W. Bennert & S. Körner. 2010. Two new triploid hybrids in Equisetum subgenus Hippochaete for Central Europe and notes on the taxonomic value of "Equisetum trachyodon forma Fuchsii"(Equisetaceae, Pteridophyta). Nova Hedwigia 90: 321–341.CrossRefGoogle Scholar
  102. Machutchon, A. G. 1989. Spring and summer food habits of black bears in the Pelly River Valley, Yukon (Canada). Northwest Science 63: 116–118.Google Scholar
  103. Marsh, A. S., J. A. Arnone III, B. T. Bormann & G. C. Gordon. 2000. The role of Equisetum in nutrient cycling in an Alaskan shrub wetland. Journal of Ecology 88: 999–1011.CrossRefGoogle Scholar
  104. Marshall, G. 1986. Growth and development of field horsetail Equisetum arvense. Weed Science 34(2): 271–275.Google Scholar
  105. Mesler, M. R. & K. L. Lu. 1977. Large gametophytes of Equisetum hyemale in northern California. American Fern Journal 67: 97–98.CrossRefGoogle Scholar
  106. Milde, J. 1867. Monographia Equisetorum. Novorum Actorum Academiae Caesareae Leopoldino-Carolinae Germanicae Naturae Curiosorum 32.Google Scholar
  107. Milton, J. N. B. & J. G. Duckett. 1985. Potential allelopathy in Equisetum. Proceedings. Section B, Biological Sciences. The Royal Society of Edinburgh 86B: 468–469.Google Scholar
  108. Moran, R. C. & R. Riba (eds). 1995. Flora Mesoamericana. Volumen 1. Pteridofitas, Psilotaceae a Salviniaceae, Univ. Nacional Autónoma de México, Ciudad Universitaria.Google Scholar
  109. Morton, J. F. 1981. Equisetum giganteum L. Pages 3–5 in Atlas of Medicinal Plants of Middle America. Charles C. Thomas, Springfield, Ill.Google Scholar
  110. Moyroud, R. 1991. Searching for legendary plants: The giant horsetail. Fairchild Tropical Garden Bulletin 46: 8–19.Google Scholar
  111. Murillo, M. T. 1983. Equisetum giganteum L. Pp. 89–90 in Usos de los Helechos en Suramerica con Especial Referencia a Colombia. Universidad Nacional de Colombia, Bogotá, D. E.Google Scholar
  112. Niklas, K. J. 1989a. Extracellular freezing in Equisetum hyemale. American Journal of Botany 76: 627–631.CrossRefGoogle Scholar
  113. ——— 1989b. Nodal Septa and the rigidity of aerial shoots of Equisetum hyemale. American Journal of Botany 76: 521–531.CrossRefGoogle Scholar
  114. ——— 1989c. Safety factors in vertical stems: Evidence from Equisetum hyemale. Evolution 43: 1625–1636.CrossRefGoogle Scholar
  115. ——— 1997. The Evolutionary Biology of Plants. The University of Chicago Press, Chicago.Google Scholar
  116. Nobel, P. S. 1999. Physiochemical and Environmental Plant Physiology, ed. 2nd. Academic Press, Inc., San Diego, California.Google Scholar
  117. Orcutt, D. M. & E. T. Nilsen 2000. Physiology of Plants Under Stress: Soil and Biotic Factors. John Wiley and Sons, Inc., New York, NY.Google Scholar
  118. Page, C. N. 1968. Spiral shoots in the Great Horsetail Equisetum telmateia Ehrh. Proceedings of the Botanical Society of the British Isles 7: 173–176.Google Scholar
  119. ——— 1985. Ecology and geography of hybridization in British and Irish horsetails. Proceedings of the Royal Society of Edinburgh 86B: 265–272.Google Scholar
  120. ——— 1997. The Ferns of Britain and Ireland, 2nd edition. Cambridge University Press.Google Scholar
  121. ——— 2002. Ecological strategies in fern evolution: a neopteridological overview. Review of Palaeobotany and Palynology 119: 1–33.CrossRefGoogle Scholar
  122. Parrish, J. T. 1993. Climate of the supercontinent Pangea. The Journal of Geology. 101: 215–233.CrossRefGoogle Scholar
  123. Pearson, L. C. 1995. The Diversity and Evolution of Plants. CRC Press. Boca Raton, Florida.Google Scholar
  124. Parsons, W. T. & E. G. Cuthbertson. 1992. Noxious Weeds of Australia. Inkata Press, Melbourne, Australia.Google Scholar
  125. Praeger, R. L. 1934. Propagation from aerial shoots in Equisetum. Journal of Botany, British and Foreign. 72: 175–176.Google Scholar
  126. Proctor, G. R. 1985. Ferns of Jamaica: a guide to the Pteridophytes. British Museuam of Natural History, London.Google Scholar
  127. Pryer, K. M., H. Schneider, A. R. Smith, R. Cranfill, P. G. Wolf, J. S. Hunt & S. D. Sipes. 2001. Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409: 618–622.PubMedCrossRefGoogle Scholar
  128. Pulliainen, E. & S. Tunkkari. 1991. Responses by the capercaillie Tetrao urugallus, and the willow grouse Lagopus lagopus, to the green matter available in early spring. Holarctic Ecology 14: 156–160.Google Scholar
  129. Purdy, B. G., S. E. MacDonald & V. J. Lieffers. 2005. Naturally saline boreal communities as models for reclamation of saline oil sand tailings. Restoration Ecology 13: 667–677.CrossRefGoogle Scholar
  130. Qiu, Y. L., L. B. Li, B. Wang, Z. D. Chen, O. Dombrovska, J. Lee, L. Kent, R. Q. Li, R. W. Jobson, T. A. Hendry, D. W. Taylor, C. M. Testa & M. Ambros. 2007. A nonflowering land plant phylogeny inferred from nucleotide sequences of seven chloroplast, mitochondrial, and nuclear genes. International Journal of Plant Sciences. 168: 691–708.CrossRefGoogle Scholar
  131. Quarles, W. 1995. The truth about horsetails or natural plant disease protection from silica. Common Sense Pest Control 11: 18.Google Scholar
  132. Raven, J. A. 2009. Horsetails get the wind up. New Phytologist 18: 6–9.CrossRefGoogle Scholar
  133. Read, D. J., J. G. Duckett, R. Francis, R. Ligrone & A. Russell. 2000. Symbiotic fungal associations in 'lower' land plants. Philosophical Transactions of the Royal Society of London B 355: 815–831.CrossRefGoogle Scholar
  134. Reed, C. F. 1971. Index to Equisetophyta: 2, Extantes, Index Equisetorum. Reed Herbarium, Baltimore, MD.Google Scholar
  135. Revilla, C. R. 2002. Hypoglycemic effect of Equisetum myriochaetum aerial parts on type 2 diabetic patients. Journal of Ethnopharmacology 81: 117–120.PubMedCrossRefGoogle Scholar
  136. Rincón, E. J., H. G. Forero, L. V. Gélvez, G. A. Torres & C. H. Rolleri. 2011. Ontogenia de lost estróbilos, desarrollo de los esporangios y esporogénesis de Equisetum giganteum (Equisetaceae) en los Andes de Colombia. Revista de Biología Tropical 59: 1845–1858.Google Scholar
  137. Rothwell, G. W. 1996. Pteridophytic evolution: an often underappreciated phytological success story. Review of Paleobotany and Palynology. 90: 209–222.CrossRefGoogle Scholar
  138. ——— & K. C. Nixon. 2006. How does the inclusion of fossil data change our conclusions about the phylogenetic history of euphyllophytes? International Journal of Plant Sciences 167: 737–749.CrossRefGoogle Scholar
  139. Rutishauser, R. 1999. Polymerous leaf whorls in vascular plants: Developmental morphology and fuzziness of organ identities. International Journal of Plant Sciences 160(6 Suppl.): S81–S103.PubMedCrossRefGoogle Scholar
  140. Rutz, L. M. & D. R. Farrar. 1984. The habitat characteristics and abundance of Equisetum x ferrissii and its parent species, Equisetum hyemale and Equisetum laevigatum, in Iowa. American Fern Journal. 74: 65–76.CrossRefGoogle Scholar
  141. Saint Paul, A. 1979. Seasonal variations in the contents of some mineral elements of Equisetum telmateia. Plantes Medicinales et Phytotherapie 13: 268–277.Google Scholar
  142. Sakamaki, Y. & Y. Ino. 2006. Tubers and rhizome fragments as propagules: competence for vegetative reproduction in Equisetum arvense. Journal of Plant Research 119: 677–683.Google Scholar
  143. Sapei, L., G. Notburga, J. Hartmann, R. Nöske, P. Strauch & O. Paris. 2007. Structural and analytical studies of silica accumulations in Equisetum hyemale. Anlytical and Bioanalytical Chemistry. 389: 1249–1257.CrossRefGoogle Scholar
  144. Sarvala, J. T., T. Kairesalo, I. Koskimies, A. Lehtovaara, J. Ruuhijarvi & I. Vaha-Piikkio. 1982. Carbon, phosphorus and nitrogen budgets of the littoral Equisetum belt in an oligotrophic lake. Hydrobiologia 86: 41–53.CrossRefGoogle Scholar
  145. Scagel, R. F., R. J. Bondini, J. R. Maze, G. E. Rouse, W. B. Schofield & J. R. Stein. 1984. Plants, An Evolutionary Survey. Wadsworth Publishing Company, Belmont, CA.Google Scholar
  146. Schaffner, J. H. 1924. Dichotomous branching in Equisetum. American Fern Journal 14: 56–57.CrossRefGoogle Scholar
  147. ——— 1927. Spiral shoots of Equisetum. American Fern Journal 17: 43–46.CrossRefGoogle Scholar
  148. ——— 1928. Fluctuation in Equisetum. American Fern Journal. 18: 69–79.CrossRefGoogle Scholar
  149. ——— 1930. Geographic distribution of the species of Equisetum in relation to their phylogeny. American Fern Journal. 20: 89–106.CrossRefGoogle Scholar
  150. ——— 1931. Propagation of Equisetum from sterile aerial shoots. Bulletin of the Torrey Botanical Club 58: 531–535.CrossRefGoogle Scholar
  151. ——— 1933. Six interesting characters of sporadic occurrence in Equisetum. American Fern Journal 23: 83–90.CrossRefGoogle Scholar
  152. ——— 1938. Root hairs of Equisetum praealtum Raf. American Fern Journal 28: 122.CrossRefGoogle Scholar
  153. Seward, A. C. 1898. Fossil Plants: for Students of Botany and Geology. Cambridge University Press, Cambridge, UK.Google Scholar
  154. Seward, A. C. 1959. Plant Life through the Ages, a Geological and Botanical Retrospect. Hafner, New York.Google Scholar
  155. Siegel, S. M. 1968. Biochemistry of the plant cell wall. Pp. 1-51 in Comprehensive Biochemistry, Volume 26, M. Florkin & E. H. Stotz (eds.). Elsevier, Amsterdam.Google Scholar
  156. Siegel, B. Z. & S. M. Siegel. 1982. Mercury content of Equisetum plants around Mount St. Helens one year after the major eruption. Science 216: 292–293.PubMedCrossRefGoogle Scholar
  157. Siegel, S. M., B. Z. Siegel, C. Lipp, A. Kruckbeberg, G. H. N. Towers & H. Warren. 1985. Indicator plant—soil mercury patterns in a mercury-rich mining area of British Columbia. Water, Air, and Soil Pollution 25: 73–85.CrossRefGoogle Scholar
  158. Sørensen, I., F. A. Pettolino, S. M. Wilson, M. S. Doblin, B. Johansen, A. Bacic & W. G. T. Willats. 2008. Mixed-linkage (1 → 3), (1 → 4)-β-D-glucan is not unique to to Poales and is an abundant component of Equisetum arvense cell walls. The Plant Journal 54: 510–521.PubMedCrossRefGoogle Scholar
  159. Spatz, H.-C., L. Kohler & T. Speck. 1998a. Biomechanics and functional anatomy of hollow-stemmed sphenopsids. I. Equisetum giganteum (Equisetaceae). American Journal of Botany 85: 305–314.PubMedCrossRefGoogle Scholar
  160. ———, N. Rowe, T. Speck & V. Daviero. 1998b. Biomechanics of hollow stemmed sphenopsids: II. Calamites: to have or not to have secondary xylem. Review of Palaeobotany and Palynology 102: 63–77.Google Scholar
  161. Speck, T., O. Speck, A. Emanns & H.-C. Spatz. 1998. Biomechanics and functional anatomy of hollow-stemmed sphenopsids: III. Equisetum hyemale. Botanica Acta 111: 366–376.Google Scholar
  162. Spruce, R. 1908. Notes of a Botanist on the Amazon & Andes. A. R. Wallace, editor. St. Martin's Press, London.Google Scholar
  163. Srinivasan, J., P. Dayananandan & P. B. Kaufman. 1979. Silica distribution in Equisetum hyemale var. affine in relation to the negative geotropic response. New Phytologist 83: 623–626.CrossRefGoogle Scholar
  164. Stanich, N. A., G. W. Rothwell & R. A. Stockey. 2009. Phylogenetic diversification of Equisetum (Equisetales) as inferred from Lower Cretaceous species of British Columbia, Canada. American Journal of Botany 96: 1289–1299.Google Scholar
  165. Stewart, W. N. & G. W. Rothwell. 1993. Paleobotany and the evolution of plants. Cambridge University Press, Cambridge, England.Google Scholar
  166. Stolze, R. G. 1983. Equisetaceae. Pages 16–20 in Ferns and Fern Allies of Guatemala, Part III: Marsileaceae, Salviniaceae, and the Fern Allies. Field Museum of Natural History, Chicago.Google Scholar
  167. Strand, V. V. 2002. The influence of ventilation systems on water depth penetration of emergent macrophytes. Freshwater Biology 47: 1097–1105.CrossRefGoogle Scholar
  168. Stützel, T. & A. Jädicke. 2000. Verzweigung bei Schachtelhalmen. Feddes Repertorium 111: 15–22.CrossRefGoogle Scholar
  169. Thomas, V. G. & J. P. Prevett. 1982. The role of horsetails (Equisetaceae) in the nutrition of northern-breeding geese. Oecologia 53: 359–363.CrossRefGoogle Scholar
  170. Tiffney, B. H. (ed). 1985. Geological Factors and the Evolution of Plants. Yale University Press, New Haven, Connecticut.Google Scholar
  171. Timell, T. E. 1964. Studies on some ancient plants. Svensk Papperstidning 67: 356–363.Google Scholar
  172. Treitel, O. 1943. The elasticity, breaking stress, and breaking strain of the horizontal rhizomes of species of Equisetum. Transactions of the Kansas Academy of Science 46: 122–132.CrossRefGoogle Scholar
  173. Tryon, A. F. 1959. Ferns of the Incas. American Fern Journal 49: 10–24.CrossRefGoogle Scholar
  174. Tryon, R. M. & A. F. Tryon. 1982. Ferns and allied plants, with special reference to Tropical America. Springer Verlag, New York.CrossRefGoogle Scholar
  175. Tschudy, R. H. 1939. The significance of certain abnormalities in Equisetum. American Journal of Botany 26: 744–749.CrossRefGoogle Scholar
  176. Uchino, F., T. Hiyoshi & M. Yatazawa. 1984. Nitrogen-fixing activities associated with rhizomes and roots of Equisetum species. Soil Biology and Biochemistry 16: 663–667.CrossRefGoogle Scholar
  177. Van der Hagen, H. G. J. M., L. H. W. T. Geelen & C. N. De Vries. 2008. Dune slack restoration in Dutch mainland coastal dunes. Journal for Nature Conservation 16: 1–11.CrossRefGoogle Scholar
  178. Verdoorn, F. 1938. Manual of Pteridology. Martinus Nijhoff, The Hague.Google Scholar
  179. Wagner, W. H. & E. W. Hammitt. 1970. Natural proliferation of floating stems of scouring-rush, Equisetum hyemale. The Michigan Botanist 9: 166–174.Google Scholar
  180. Walker, E. R. 1931. The gametophytes of three species of Equisetum. Botanical Gazette 92:1–22.Google Scholar
  181. Wassmann, R. & M. S. Aulakh. 2000. The role of rice plants in regulating mechanisms of methane emissions. Biology and Fertility of Soils 31: 20–29.CrossRefGoogle Scholar
  182. Westwood, M. R. I. 1989. An aberrant form of Equisetum telmateia (Pteridophyta) from the west of Ireland. The Fern Gazette 13: 277–281.Google Scholar
  183. Williams, W. D. 1991. Chinese and Mongolian saline lakes: A limnological overview. Hydrobiologia 210: 39–66.CrossRefGoogle Scholar
  184. Xia, Y., V. Sarafis, E. O. Campbell & P. T. Callagha. 1993. Non invasive imaging of water flow in plants by NMR microscopy. Protoplasma 173: 170–176.CrossRefGoogle Scholar
  185. Yamanaka, S., K. Sato, F. Ito, S. Komatsubara, H. Ohata & Yoshino, K. 2012. Roles of silica and lignin in horsetail (Equisetum hyemale) with special reference to mechanical properties. Journal of Applied Physics 111 doi: 10.1063/1.3688253.

Copyright information

© The New York Botanical Garden 2013

Authors and Affiliations

  1. 1.The Montgomery Botanical CenterCoral GablesUSA

Personalised recommendations