Skip to main content

Advertisement

Log in

Proteaceae Leaf Fossils: Phylogeny, Diversity, Ecology and Austral Distributions

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Foliar fossils of Proteaceae are reviewed, and useful specimens for interpreting evolution, and past and present distributions and environments are discussed. There are no definite Cretaceous occurrences. However, there is evidence of extant lineages dating from the Paleocene onwards, including tribe Persoonieae of subfamily Persoonioideae and each of the four tribes of subfamily Grevilleoideae. High diversity and abundance characterizes the Australian fossil record, including sclerophyllous and xeromorphic forms, but there is little evidence of the prominent extant subfamily Proteoideae. New Zealand had a much higher diversity of Proteaceae than at present, including Oligo-Miocene species of open vegetation. The South American leaf fossil record is not extensive. However, the fossil records of Embothrieae and Orites are consistent with the distributions of their extant relatives in South America and Australia being the result of vicariance. Overall, there is a need for more research on placing Proteaceae leaf fossils in a phylogenetic context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Literature Cited

  • Ali, J. R. & J. C. Aitchison. 2009. Kerguelen Plateau and the Late Cretaceous southern-continent bioconnection hypothesis: tales from a topographical ocean. Journal of Biogeography 36: 1778–1784.

    Article  Google Scholar 

  • Alley, N. F. 1998. Cainozoic stratigraphy, palaeoenvironment and geological evolution of the Lake Eyre Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 144: 239–263.

    Article  Google Scholar 

  • APG, III (The Angiosperm Phylogeny Group). 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161: 105–121.

    Article  Google Scholar 

  • Askin, R. A. & A. M. Baldoni. 1998. The Santonian through Paleogene record of Proteaceae in the southern South America–Antarctic Peninsula region. Australian Systematic Botany 11: 373–390.

    Article  Google Scholar 

  • Barker, N. P., P. H. Weston, J. P. Rourke & G. Reeves. 2002. The relationships of the southern African Proteaceae as elucidated by internal transcribed spacer (ITS) DNA sequence data. Kew Bulletin 57: 867–883.

    Article  Google Scholar 

  • ———, ———, F. Rutschmann & H. Sauquet. 2007. Molecular dating of the ‘Gondwanan’ plant family Proteaceae is only partially congruent with the timing of the break-up of Gondwana. Journal of Biogeography 34: 2012–2027.

    Article  Google Scholar 

  • Barker, R. M., L. Haegi & W. R. Barker. 1999. Hakea. Pp 31–170. In: A. J. G. Wilson (ed). Flora of Australia, Vol. 17B. CSIRO-ABRS, Canberra.

    Google Scholar 

  • Barreda, V. & L. Palazzesi. 2007. Patagonian vegetation turnovers during the Paleogene-early Neogene: origin of arid-adapted floras. Botanical Review 73: 31–50.

    Article  Google Scholar 

  • Beadle, N. C. W. 1966. Soil phosphate and its role in molding segments of the Australian flora and vegetation, with special reference to xeromorphy and sclerophylly. Ecology 47: 992–1007.

    Article  Google Scholar 

  • Blackburn, D. T. 1981. Tertiary megafossil flora of Maslin Bay, South Australia: numerical taxonomic study of selected leaves. Alcheringa 5: 9–28.

    Article  Google Scholar 

  • ——— 1985. Palaeobotany of the Yallourn and Morwell coal seams. Palaeobotanical Project – Report 3. State Electricity Commission of Victoria, Melbourne.

  • ——— & I. R. K. Sluiter. 1994. The Oligo–Miocene coal floras of southeastern Australia. Pp 328–367. In: R. S. Hill (ed). Australian vegetation history: Cretaceous to Recent. Cambridge University Press, Cambridge.

    Google Scholar 

  • Carpenter, R. J. 1991. Palaeovegetation and environment at Cethana, Tasmania. PhD thesis, University of Tasmania, Hobart.

  • ——— 1994. Cuticular morphology and aspects of the ecology and fossil history of North Queensland rainforest Proteaceae. Botanical Journal of the Linnean Society 116: 249–303.

    Article  Google Scholar 

  • ——— & R. S. Hill. 1988. Early Tertiary Lomatia (Proteaceae) macrofossils from Tasmania, Australia. Review of Palaeobotany and Palynology 56: 141–150.

    Article  Google Scholar 

  • ——— & M. Pole. 1995. Eocene plant fossils from the Lefroy and Cowan Paleodrainages, Western Australia. Australian Systematic Botany 8: 1107–1154.

    Article  Google Scholar 

  • ——— & G. J. Jordan. 1997. Early Tertiary macrofossils of Proteaceae from Tasmania. Australian Systematic Botany 10: 533–563.

    Article  Google Scholar 

  • ———, ——— & R. S. Hill. 1994. Banksieaephyllum taylorii (Proteaceae) from the Late Paleocene of New South Wales and its relevance to the origin of Australia’s scleromorphic flora. Australian Systematic Botany 7: 385–392.

    Article  Google Scholar 

  • ———, R. S. Hill & G. J. Jordan. 2005. Leaf cuticular morphology links Platanaceae and Proteaceae. International Journal of Plant Sciences 166: 843–855.

    Article  Google Scholar 

  • ———, ——— & L. J. Scriven. 2006. Palmately lobed Proteaceae leaf fossils from the Middle Eocene of South Australia. International Journal of Plant Sciences 167: 1049–1060.

    Article  Google Scholar 

  • ———, ———, D. R. Greenwood, A. D. Partridge & M. A. Banks. 2004. No snow in the mountains: Early Eocene plant fossils from Hotham Heights, Victoria, Australia. Australian Journal of Botany 52: 685–718.

    Article  Google Scholar 

  • ———, J. M. Bannister, G. J. Jordan & D. E. Lee. 2010a. Leaf fossils of Proteaceae tribe Persoonieae from the Late Oligocene-Early Miocene of New Zealand. Australian Systematic Botany 23: 1–15.

    Article  Google Scholar 

  • ———, M. P. Goodwin, R. S. Hill & K. Kanold. 2011. Silcrete plant fossils from Lightning Ridge, New South Wales: new evidence for climate change and monsoon elements in the Australian Cenozoic. Australian Journal of Botany 59: 399–425

  • ———, G. J. Jordan, D. E. Lee & R. S. Hill. 2010b. Leaf fossils of Banksia (Proteaceae) from New Zealand: an Australian abroad. American Journal of Botany 97: 288–297.

    Article  PubMed  Google Scholar 

  • Christophel, D. C. 1984. Early tertiary Proteaceae: the first floral evidence for the Musgraveinae. Australian Journal of Botany 32: 177–186.

    Article  Google Scholar 

  • ——— 1994. The early Tertiary macrofloras of continental Australia. Pp 262–275. In: R. S. Hill (ed). Australian vegetation history: Cretaceous to Recent. Cambridge University Press, Cambridge.

    Google Scholar 

  • ——— & D. R. Greenwood. 1987. A megafossil flora from the Eocene of Golden Grove, South Australia. Transactions of the Royal Society of South Australia 111: 155–162.

    Google Scholar 

  • ———, W. K. Harris & A. K. Syber. 1987. The Eocene flora of the Anglesea locality, Victoria. Alcheringa 11: 303–324.

    Article  Google Scholar 

  • Cookson, I. C. & S. L. Duigan. 1950. Fossil Banksieae from Yallourn, Victoria, with notes on the morphology and anatomy of living species. Australian Journal of Scientific Research, Series B, Biological Sciences 3: 133–165.

    Google Scholar 

  • Coxall, H. K., P. A. Wilson, H. Pälike, C. Lear & J. Backman. 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433: 53–57.

    Article  PubMed  CAS  Google Scholar 

  • Crane, P. R., K. R. Pedersen, E. M. Friis & A. N. Drinnan. 1993. Early Cretaceous (early to middle Albian) platanoid inflorescences associated with Sapindopsis leaves from the Potomac group of eastern North America. Systematic Botany 18: 328–344.

    Article  Google Scholar 

  • Crisp, M., L. Cook & D. Steane. 2004. Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities? Philosophical Transactions of the Royal Society of London, Series B 359: 1551–1571.

    Article  Google Scholar 

  • Cronquist, A. 1968. The evolution and classification of flowering plants. Houghton Mifflin, Boston.

    Google Scholar 

  • Dettmann, M. E. & D. M. Jarzen. 1998. The early history of the Proteaceae in Australia: the pollen record. Australian Systematic Botany 11: 401–438.

    Article  Google Scholar 

  • ——— & H. T. Clifford. 2005. Fossil fruit of the Grevilleeae (Proteaceae) in the Tertiary of eastern Australia. Memoirs of the Queensland Museum 51: 359–374.

    Google Scholar 

  • ——— & ———. 2010. Fossil fruit of the Macadamieae (Proteaceae) in the Tertiary of eastern Australia: Eureka gen. nov. Memoirs of the Queensland Museum 55: 147–166.

    Google Scholar 

  • Doyle, J. A. 2007. Systematic value and evolution of leaf architecture across the angiosperms in light of molecular phylogenetic analyses. Courier Forschungsinstitut Senckenberg 258: 21–37.

    Google Scholar 

  • Drinnan, A. N., P. R. Crane & S. B. Hoot. 1994. Patterns of floral evolution in the early diversification of non-magnoliid dicotyledons (eudicots). Plant Systematics and Evolution Suppl. 8: 93–122.

    Google Scholar 

  • Ferguson, D. K., D. E. Lee, J. M. Bannister, R. Zetter, G. J. Jordan, N. Vavra & D. C. Mildenhall. 2010. The taphonomy of a remarkable leaf bed assemblage from the Late Oligocene-early Miocene Gore Lignite Measures, southern New Zealand. International Journal of Coal Geology 83: 123–181.

    Article  CAS  Google Scholar 

  • Feuer, S. 1990. Pollen morphology of the Embothrieae (Proteaceae) II. Embothriinae (Embothrium, Oreocallis, Telopea). Grana 29: 19–36.

    Article  Google Scholar 

  • Gandolfo, M., E. J. Hermsen, M. C. Zamaloa, K. C. Nixon, C. C. González, P. Wilf, N. R. Cúneo & K. R. Johnson. 2011. Oldest known Eucalyptus macrofossils are from South America. PLoS ONE 6: e21084.

    Article  PubMed  CAS  Google Scholar 

  • Gandolfo, M. A., K. C. Nixon & W. L. Crepet. 2008. Selection of fossils for calibration of molecular dating models. Annals of the Missouri Botanical Garden 95: 34–42.

    Article  Google Scholar 

  • George, A. S. & B. P. M. Hyland. 1995. Megahertzia. Pp 354–355. In: P. McCarthy (ed). Flora of Australia, Vol. 16. CSIRO-ABRS, Melbourne.

    Google Scholar 

  • González, C. C., M. A. Gandolfo, N. R. Cúneo, P. Wilf & K. R. Johnson. 2007. Revision of the Proteaceae macrofossil record from Patagonia, Argentina. Botanical Review 73: 235–266.

    Article  Google Scholar 

  • Greenwood, D. R. & D. C. Christophel. 2005. The origins and Tertiary history of Australian ‘Tertiary’ rainforests. Pp 336–373. In: E. Bermingham, C. Dick, & C. Moritz (eds). Tropical rainforests: past, present and future. Chicago University Press, Chicago.

    Google Scholar 

  • Halle, T. G. 1940. A fossil fertile Lygodium from the Tertiary of South Chile. Svensk Botanisk Tidskrift 34: 257–264.

    Google Scholar 

  • Harris, W. K. 1966. Proteacidites latrobensis. Taxon 15: 332–333.

    Google Scholar 

  • Hebel, I. & T. Torres. 2009. Fossil pollen on King George Island (Antarctica) and continental Chile with affinity to current Chilean Proteaceae. Anales Instituto Patagonia (Chile) 37: 7–22.

    Article  Google Scholar 

  • Hickey, L. J. & J. A. Wolfe. 1975. The bases of angiosperm phylogeny: vegetative morphology. Annals of the Missouri Botanical Garden 62: 538–589.

    Article  Google Scholar 

  • Hill, R. S. 1982. The Eocene megafossil flora of Nerriga, New South Wales, Australia. Palaeontographica Abt B 181: 14–77.

    Google Scholar 

  • ——— 1988. Australian Tertiary angiosperm and gymnosperm leaf remains – an updated catalogue. Alcheringa 12: 207–219.

    Article  Google Scholar 

  • ——— 1998. Fossil evidence for the onset of xeromorphy and scleromorphy in Australian Proteaceae. Australian Systematic Botany 11: 391–400.

    Article  Google Scholar 

  • ——— & R. J. Carpenter. 1991. Extensive past distributions for major Gondwanic floral elements: macrofossil evidence. Pp 239–247. In: M. R. Banks, S. J. Smith, A. E. Orchard, & G. Kantvilas (eds). Aspects of Tasmanian botany. Royal Society of Tasmania, Hobart.

    Google Scholar 

  • ——— & D. C. Christophel. 1988. Tertiary leaves of the tribe Banksieae (Proteaceae) from south-eastern Australia. Botanical Journal of the Linnean Society 97: 205–227.

    Article  Google Scholar 

  • ——— & H. E. Merrifield. 1993. An early Tertiary macroflora from West Dale, southwestern Australia. Alcheringa 17: 285–326.

    Article  Google Scholar 

  • ——— & S. S. Whang. 1996. A new species of Fitzroya (Cupressaceae) from Oligocene sediments in north-western Tasmania. Australian Systematic Botany 9: 867–875.

    Article  Google Scholar 

  • ———, L. J. Scriven & G. J. Jordan. 1995. The fossil record of Australian Proteaceae. Pp 621–630. In: P. McCarthy (ed). Flora of Australia, Vol. 16. CSIRO-ABRS, Melbourne.

    Google Scholar 

  • Hoot, S. B. & A. R. Douglas. 1998. Phylogeny of the Proteaceae based on atpB and atpB-rbcL intergenic spacer region sequences. Australian Systematic Botany 11: 301–320.

    Article  Google Scholar 

  • Hyland, B. P. M. 1995. Hollandaea. Pp 391–393. In: P. McCarthy (ed). Flora of Australia, Vol. 16. CSIRO-ABRS, Melbourne.

    Google Scholar 

  • Johnson, L. A. S. 1998. Proteaceae – where are we? Australian Systematic Botany 11: 251–255.

    Article  Google Scholar 

  • ——— & B. G. Briggs. 1963. Evolution in the Proteaceae. Australian Journal of Botany 11: 21–61.

    Article  Google Scholar 

  • ——— & ———. 1975. On the Proteaceae – The evolution and classification of a southern family. Botanical Journal of the Linnean Society 70: 83–182.

    Article  Google Scholar 

  • ——— & ———. 1981. Three old southern families – Myrtaceae, Proteaceae and Restionaceae. Pp 429–469. In: A. Keast (ed). Ecological biogeography of Australia. Junk, The Hague.

    Google Scholar 

  • Jordan, G. J. 1995. Early-middle Pleistocene leaves of extinct and extant Proteaceae from western Tasmania, Australia. Botanical Journal of the Linnean Society 118: 19–35.

    Article  Google Scholar 

  • ——— & R. S. Hill. 1991. Two new Banksia species from Pleistocene sediments in western Tasmania. Australian Systematic Botany 4: 499–511.

    Article  Google Scholar 

  • ———, R. J. Carpenter & R. S. Hill. 1991. Late Pleistocene vegetation and climate near Melaleuca Inlet, south-western Tasmania. Australian Journal of Botany 39: 315–333.

    Article  Google Scholar 

  • ———, ——— & ———. 1998. The macrofossil record of Proteaceae: a review with new species. Australian Systematic Botany 11: 465–501.

    Article  Google Scholar 

  • ———, R. A. Dillon & P. H. Weston. 2005. Solar radiation as a factor in the evolution of scleromorphic leaf anatomy in Proteaceae. American Journal of Botany 92: 789–796.

    Article  PubMed  Google Scholar 

  • ———, P. H. Weston, R. J. Carpenter, R. A. Dillon & T. J. Brodribb. 2008. The evolutionary relations of sunken, covered, and encrypted stomata to dry habitats in Proteaceae. American Journal of Botany 95: 521–530.

    Article  PubMed  Google Scholar 

  • ———, J. M. Bannister, D. C. Mildenhall, R. Zetter & D. E. Lee. 2010. Fossil Ericaceae from New Zealand: deconstructing the use of fossil evidence in historical biogeography. American Journal of Botany 97: 59–70.

    Article  PubMed  Google Scholar 

  • Ladiges, P. Y. & D. Cantrill. 2007. New Caledonia–Australian connections: biogeographic patterns and geology. Australian Systematic Botany 20: 383–389.

    Article  Google Scholar 

  • Lambers, H., M. W. Shane, M. D. Cramer, S. J. Pearse & E. J. Veneklaas. 2006. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Annals of Botany 98: 693–713.

    Article  PubMed  Google Scholar 

  • Landis, C. A., H. J. Campbell, J. G. Begg, D. C. Mildenhall, A. M. Paterson & S. A. Trewick. 2008. The Waipounamu Erosion Surface: questioning the antiquity of the New Zealand land surface and terrestrial fauna and flora. Geological Magazine 145: 173–197.

    Article  Google Scholar 

  • Lange, R. T. 1978. Some Eocene leaf fragments comparable to Proteaceae. Journal of the Royal Society of Western Australia 60: 107–114.

    Google Scholar 

  • Lawver, L. A. & L. M. Gahagan. 2003. Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeography, Palaeoclimatology, Palaeoecology 198: 11–37.

    Article  Google Scholar 

  • Lee, D. E., W. G. Lee & N. Mortimer. 2001. Where and why have all the flowers gone? Depletion and turnover in the New Zealand Cenozoic angiosperm flora in relation to palaeogeography and climate. Australian Journal of Botany 49: 341–356.

    Article  Google Scholar 

  • Lyle, M., S. Gibbs, T. C. Moore & D. K. Rea. 2007. Late Oligocene initiation of the Antarctic Circumpolar Current: evidence from the South Pacific. Geology 35: 691–694.

    Article  Google Scholar 

  • Macphail, M. K. 1999. Palynostratigraphy of the Murray Basin, inland southeastern Australia. Palynology 23: 199–242.

    Article  Google Scholar 

  • ———, N. F. Alley, E. M. Truswell & I. R. K. Sluiter. 1994. Early Tertiary vegetation: evidence from spores and pollen. Pp 189–261. In: R. S. Hill (ed). Australian vegetation history: Cretaceous to Recent. Cambridge University Press, Cambridge.

    Google Scholar 

  • Magallón, S. A. 2004. Dating lineages: molecular and paleontological approaches to the temporal framework of clades. International Journal of Plant Sciences 165(4 Suppl.): S7–S21.

    Article  Google Scholar 

  • Martin, A. R. H. 1995. Palaeogene proteaceous pollen and phylogeny. Alcheringa 19: 27–40.

    Article  Google Scholar 

  • Mast, A. R. & K. Thiele. 2007. The transfer of Dryandra R.Br. to Banksia L.f. (Proteaceae). Australian Systematic Botany 20: 63–71.

    Article  Google Scholar 

  • ———, C. L. Willis, E. H. Jones, K. M. Downs & P. H. Weston. 2008. A smaller Macadamia from a more vagile tribe: inference of phylogenetic relationships, divergence times, and diaspore evolution in Macadamia and relatives (tribe Macadamieae; Proteaceae). American Journal of Botany 95: 843–870.

    Article  PubMed  Google Scholar 

  • McLoughlin, S. & R. S. Hill. 1996. The succession of Western Australian Phanerozoic terrestrial floras. Pp 61–80. In: S. D. Hopper, J. A. Chappill, M. S. Harvey, & A. S. George (eds). Gondwanan heritage: past, present and future of the Western Australian biota. Surrey Beatty & Sons, Chipping Norton, Australia.

    Google Scholar 

  • ———, A. N. Drinnan & A. C. Rozefelds. 1995. A Cenomanian flora from the Winton Formation, Eromanga Basin, Queensland, Australia. Memoirs of the Queensland Museum 38: 273–313.

    Google Scholar 

  • McNamara, K. J. & J. K. Scott. 1983. A new species of Banksia (Proteaceae) from the Eocene Merlinleigh Sandstone of the Kennedy Range, Western Australia. Alcheringa 7: 185–193.

    Article  Google Scholar 

  • Milne, L. A. 1998. Beaupreaidites and new Conospermeae (Proteoideae) affiliates. Australian Systematic Botany 11: 553–603.

    Article  Google Scholar 

  • Mott, K. A., A. C. Gibson & J. W. O’Leary. 1982. The adaptive significance of amphistomatic leaves. Plant, Cell and Environment 5: 455–460.

    Article  Google Scholar 

  • Pocknall, D. T. & Y. M. Crosbie. 1988. Pollen morphology of Beauprea (Proteaceae): modern and fossil. Review of Palaeobotany and Palynology 53: 305–327.

    Article  Google Scholar 

  • Pole, M. S. 2001. Can long-distance dispersal be inferred from the New Zealand plant fossil record? Australian Journal of Botany 49: 357–366.

    Article  Google Scholar 

  • Pole, M. 1992. Eocene vegetation from Hasties, north-eastern Tasmania. Australian Systematic Botany 5: 431–475.

    Article  Google Scholar 

  • ——— 1996. Plant macrofossils from the Foulden Hills Diatomite (Miocene), Central Otago, New Zealand. Journal of the Royal Society of New Zealand 26: 1–39.

    Article  Google Scholar 

  • ——— 1997. Paleocene plant macrofossils from Kakahu, south Canterbury, New Zealand. Journal of the Royal Society of New Zealand 27: 371–400.

    Article  Google Scholar 

  • ——— 1998. The Proteaceae record in New Zealand. Australian Systematic Botany 11: 343–372.

    Article  Google Scholar 

  • ——— 2000. Dicotyledonous leaf macrofossils from the latest Albian-earliest Cenomanian of the Eromanga Basin, Queensland, Australia. Paleontological Research 4: 39–52.

    Google Scholar 

  • ——— 2007a. Plant-macrofossil assemblages during Pliocene uplift, South Island, New Zealand. Australian Journal of Botany 55: 118–142.

    Article  Google Scholar 

  • ——— 2007b. Early Eocene dispersed cuticles and mangrove to rainforest vegetation at Strahan-Regatta Point, Tasmania. Palaeontologia Electronica 10.3.15A.

  • ——— 2008. Dispersed leaf cuticle from the Early Miocene of southern New Zealand. Palaeontologia Electronica 11.3.15A.

  • ——— & D. M. J. S. Bowman. 1996. Tertiary plant fossils from Australia's 'Top End'. Australian Systematic Botany 9: 113–126.

    Article  Google Scholar 

  • ——— & V. Vajda. 2009. A new terrestrial Cretaceous-Paleogene site in New Zealand – turnover in macroflora confirmed by palynology. Cretaceous Research 30: 917–938.

    Article  Google Scholar 

  • Prance, G. T. & V. Plana. 1998. The American Proteaceae. Australian Systematic Botany 11: 287–299.

    Article  Google Scholar 

  • Pujana, R. R. 2007. New fossil woods of Proteaceae from the Oligocene of southern Patagonia. Australian Systematic Botany 20: 119–125.

    Article  Google Scholar 

  • Purnell, H. M. 1960. Studies of the family Proteaceae. I. Anatomy and morphology of the roots of some Victorian species. Australian Journal of Botany 8: 38–50.

    Google Scholar 

  • Rowett, A. I. & D. C. Christophel. 1990. The dispersed cuticle profile of the Eocene Anglesea clay lenses. Pp 115–121. In: J. G. Douglas & D. C. Christophel (eds). Proceedings, 3rd IOP conference, 1988. A-Z Press, Melbourne.

    Google Scholar 

  • Rozefelds, A. C. 1990. A mid-Tertiary rainforest flora from Capella, Central Queensland. Pp 123–136. In: J. G. Douglas & D. C. Christophel (eds). Proceedings, 3rd IOP conference, 1988. A-Z Press, Melbourne.

    Google Scholar 

  • ——— 1992. The subtribe Hicksbeachiinae (Proteaceae) in the Australian Tertiary. Memoirs of the Queensland Museum 32: 195–202.

    Google Scholar 

  • ———, D. C. Christophel & N. F. Alley. 1992. Tertiary occurrence of the fern Lygodium (Schizaeaceae) in Australia and New Zealand. Memoirs of the Queensland Museum 32: 203–222.

    Google Scholar 

  • ———, M. E. Dettmann & H. T. Clifford. 2005. Xylocaryon lockii F.Muell. (Proteaceae) fruits from the Cenozoic of south eastern Australia. Kanunnah 1: 91–102.

    Google Scholar 

  • Sauquet, H. P. & D. J. Cantrill. 2007. Pollen diversity and evolution in Proteoideae (Proteales: Proteaceae). Systematic Botany 32: 271–316.

    Article  Google Scholar 

  • Sauquet, H., P. H. Weston, C. L. Anderson, N. P. Barker, D. J. Cantrill, A. R. Mast & V. Savolainen. 2009a. Contrasted patterns of hyperdiversification in Mediterranean hotspots. Proceedings of the National Academy of Sciences, USA 106: 221–225.

    Article  CAS  Google Scholar 

  • ———, ———, N. P. Barker, C. L. Anderson, D. J. Cantrill & V. Savolainen. 2009b. Using fossils and molecular data to reveal the origins of the Cape proteas (subfamily Proteoideae). Molecular Phylogenetics and Evolution 51: 31–43.

    Article  PubMed  CAS  Google Scholar 

  • Scholtz, A. 1985. The palynology of the upper lacustrine sediments of the Arnot Pipe, Banke, Namaqualand. Annals of the South African Museum 95: 1–109.

    Google Scholar 

  • Sigé, B., M. Archer, J.-Y. Crochet, H. Godthelp, S. Hand & R. Beck. 2009. Chulpasia and Thylacotinga, late Paleocene-earliest Eocene trans-Antarctic Gondwanan bunodont marsupials: new data from Australia. Geobios 42: 813–823.

    Article  Google Scholar 

  • Sleumer, H. 1954. Proteaceae americanae. Botanische Jahrbücher 76: 139–211.

    Google Scholar 

  • Stace, C. A. 1965. Cuticular studies as an aid to plant taxonomy. Bulletin of the British Museum of Natural History, Series E 4: 1–78.

    Google Scholar 

  • Stover, L. E. & A. D. Partridge. 1973. Tertiary and Late Cretaceous spores and pollen from the Gippsland Basin, southeastern Australia. Proceedings of the Royal Society of Victoria 85: 237–286.

    Google Scholar 

  • Takhtajan, A. L. 1969. Flowering plants: origin and dispersal. Smithsonian Institution, Washington, D. C.

    Google Scholar 

  • Taylor, G., E. M. Truswell, K. G. McQueen & M. C. Brown. 1990. The Early Tertiary palaeogeography, landform evolution and palaeoclimates of the Southern Monaro, NSW, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 78: 109–134.

    Article  Google Scholar 

  • Telford, I. R. H. 1995. Symphionema. Pp 133–135. In: P. McCarthy (ed). Flora of Australia, Vol. 16. CSIRO-ABRS, Melbourne.

    Google Scholar 

  • Vadala, A. J. & A. N. Drinnan. 1998. Elaborating the fossil history of the Banksiinae: a new species of Banksieaephyllum (Proteaceae) from the late Paleocene of New South Wales. Australian Systematic Botany 11: 439–463.

    Article  Google Scholar 

  • ——— & D. R. Greenwood. 2001. Australian Paleogene vegetation and environments: evidence for palaeo-Gondwanic elements in the fossil records of Lauraceae and Proteaceae. Pp 196–221. In: I. Metcalfe, J. M. B. Smith, & I. Davidson (eds). Faunal and floral migrations and evolution in SE Asia-Australasia. Swets & Zeitlinger Publishers, Lisse.

    Google Scholar 

  • Waters, J. M. & D. Craw. 2006. Goodbye Gondwana? New Zealand biogeography, geology, and the problem of circularity. Systematic Biology 55: 351–356.

    Article  PubMed  Google Scholar 

  • Weston, P. H. 1995. Bellendena. Pp 125–127. In: P. McCarthy (ed). Flora of Australia, Vol. 16. CSIRO-ABRS, Melbourne.

    Google Scholar 

  • ——— 2006. Proteaceae. Pp 364–404. In: K. Kubitzki (ed). The families and genera of vascular plants, Vol. 9. Springer, Berlin.

    Google Scholar 

  • ——— & M. D. Crisp. 1994. Cladistic biogeography of waratahs (Proteaceae: Embothrieae) and their allies across the Pacific. Australian Systematic Botany 7: 225–249.

    Article  Google Scholar 

  • ——— & N. P. Barker. 2006. A new suprageneric classification of the Proteaceae, with an annotated checklist of genera. Telopea 11: 314–344.

    Google Scholar 

  • Wilf, P., K. R. Johnson, N. R. Cúneo, M. E. Smith, B. S. Singer & M. A. Gandolfo. 2005. Eocene plant diversity at Laguna del Hunco and Río Pichileufú, Patagonia, Argentina. American Naturalist 165: 634–650.

    Article  PubMed  Google Scholar 

  • ———, S. A. Little, A. Iglesias, M. C. Zamaloa, M. A. Gandolfo, N. R. Cúneo & K. R. Johnson. 2009. Papuacedrus (Cupressaceae) in Eocene Patagonia, a new fossil link to Australasian rainforests. American Journal of Botany 96: 2031–2047.

    Article  PubMed  Google Scholar 

  • Zamaloa, M. C., M. A. Gandolfo, C. C. González, E. J. Romero, N. R. Cúneo & P. Wilf. 2006. Casuarinaceae from the Eocene of Patagonia, Argentina. International Journal of Plant Sciences 167: 1279–1289.

    Article  Google Scholar 

Download references

Acknowledgments

I thank M. C. Zamaloa, M. A. Gandolfo and N. R. Cúneo for the invitation to speak at the VII Southern Connections Congress, Bariloche, Argentina, and to submit this paper. I am very grateful to R. S. Hill, G. J. Jordan and D. E. Lee for encouraging discussions and funding assistance over many years, in part through the Australian Research Council, an Otago Research Grant from the University of Otago, and the Marsden Fund (New Zealand). Funds from Australian Research Council Discovery Project 110104926 assisted in completing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Carpenter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpenter, R.J. Proteaceae Leaf Fossils: Phylogeny, Diversity, Ecology and Austral Distributions. Bot. Rev. 78, 261–287 (2012). https://doi.org/10.1007/s12229-012-9099-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-012-9099-y

Keywords

Navigation