Skip to main content
Log in

Plants Replacing Plants: The Future of Community Modeling and Research

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Over the past few decades, several conceptual and mathematical models of plant community organization and dynamics have been put forward. While each of these models has attempted to explain important plant community patterns by attributing them to some aspect of plant niches, or to a higher-level process, their predictive success has been very limited. Here I explore why this has happened by reviewing and summarizing each model individually by highlighting the plant community pattern each is trying to explain and predict, by identifying the mechanisms, tolerances, and/or processes authors propose are producing those patterns and describing how they work within the model, and by examining the assumptions of each model. I then discuss common misconceptions and shortcomings among the models, and finally propose a unifying synthesis and comprehensive framework that can serve as a basis for future plant community modeling and research. This synthesis is composed of three key ideas (1) that plant-plant replacements are the “fundamental process” of plant communities which produce every community-level terrestrial plant pattern, (2) that plants respond to mechanisms and tolerances which work both in spaces inside plants and in those spaces outside plants that influence them and/or they may be able to influence, and (3) that those responses make up plant niches which may be able to predict how plants replace themselves over time and space. Consequently I suggest to future field researchers that the best way to understand plant community patterns is to study plant-plant replacements, first by sampling long-term vegetation plots in order to map them, and then by manipulating mechanisms and tolerances in field experiments in order to understand what causes them.

Resumen

Durante los últimos decenios, varios modelos conceptuales y matemáticos de la organización de la comunidad y la dinámica se han presentado. Si bien cada uno de estos modelos clásicos ha tratado de explicar los patrones importante comunidad de plantas, al atribuir a algún aspecto de la planta de nichos, o para un proceso de alto nivel, su éxito predictivo ha sido muy limitada. Aquí se explora por qué esto ha sucedido por la revisión y resumen de cada modelo por separado por (1) poner de relieve el patrón de la comunidad de plantas cada uno está tratando de explicar y predecir, (2) identificar los mecanismos, las tolerancias, y/o procesos autores proponen están produciendo los patrones de y describir cómo funcionan dentro del modelo, y (3) el examen de los supuestos de cada modelo. Finalmente, se plantea conceptos erróneos comunes y las deficiencias entre los modelos, y proponer una síntesis unificadora y un marco integral que puede servir de base para modelar el futuro y la investigación. Esta síntesis propone que las plantas responden a los mecanismos y las tolerancias (que funcionan en espacios dentro y fuera de las plantas), que esas respuestas constituyen nichos de planta, y que los nichos son la clave para entender y predecir cómo las plantas se reemplazan con el tiempo y el espacio. Central de esta síntesis es la idea de que las sustituciones de plantas de plantas son el "proceso fundamental" de las comunidades de plantas que producen cada patrón de plantas terrestres a nivel comunitario. Como consecuencia de ello, sugiero a los investigadores de campo de futuro que la mejor manera de entender los patrones de la planta es la organización de experimentos para investigar estos sustitutos vegetales de plantas mediante la manipulación de los mecanismos y las tolerancias que las causan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Literature Cited

  • Bazzaz, F. A. 1996. Plants in Changing Environments: Linking Physiological, Population, and Community Ecology. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Botkin, D. B., J. F. Janak & J. R. Wallis. 1972. Some ecological consequences of a computer model of forest growth. Ecology 60: 849–872.

    Article  Google Scholar 

  • Burton, P. J. & F. A. Bazzaz. 1991. Tree seedling emergence on interactive temperature and moisture gradients and in patches of old-field vegetation. Am. J. Bot. 78: 131–149.

    Article  Google Scholar 

  • Busing, R. T. 1996. Estimation of tree replacement patterns in an Appalachian Picea-Abies forest. J. Veg. Sci. 7: 685–694.

    Article  Google Scholar 

  • Caswell, H. 1978. Predator-mediated coexistence: a nonequiibrium model. Am. Nat. 112: 127–154.

    Article  Google Scholar 

  • Chave, J., H. C. Muller-Landau & S. A. Levin. 2002. Comparing Classical Community Models: Theoretical Consequences for Patterns of Diversity. Am. Nat. 159: 1–23.

    Article  PubMed  Google Scholar 

  • Chesson, P. 2000. Mechanisms of maintenance of species diversity. Ann. Rev. Ecol. Syst. 31: 343–366.

    Article  Google Scholar 

  • Chesson, P. L. & R. R. Warner. 1981. Environmental variability promotes coexistence in lottery competitive systems. Am. Nat. 117: 923–944.

    Article  Google Scholar 

  • Czaran, T. & S. Bartha. 1992. Spatiotemporal dynamic models of plant populations and communities. TREE 7: 38–42.

    PubMed  CAS  Google Scholar 

  • Gause, G. F. 1934. The struggle for existence. Williams and Wilkins.

  • Gleason, H. A. 1926. The individualistic concept of the plant association. Bull. Torrey Bot. Club 53: 7–26.

    Article  Google Scholar 

  • Holt, R. D., S. W. Pacala, T. W. Smith & J. Liu. 1995. Linking Contemporary Vegetation Models with Spatially Explicit Animal Population Models. Ecol. Appl. 5: 20–27.

    Article  Google Scholar 

  • Horn, H. S. 1976. Markovian properties of forest succession. Pp 187–204. In: J. M. Diamond & M. L. Cody (eds). Ecology of communities. Harvard University Press, Harvard University, MA.

    Google Scholar 

  • Hubbell, S. P. 2001. The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Hutchinson, G. E. 1957. The multivariate niche. Cold Spring Harbour Symposium. Quarterly of Biology 22: 415–421.

    Google Scholar 

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.

    Article  Google Scholar 

  • Levins, R. & D. Culver. 1971. Regional coexistence of species and competition between rare species. Proc. Nat. Acad. Sci. USA 68: 1246–1248.

    Article  PubMed  CAS  Google Scholar 

  • Lortie, C. J., R. W. Brooker, P. Choler, Z. Kikvidze, R. Michalet, F. I. Pugnaire & R. M. Callaway. 2004. Rethinking plant community theory. Oikos 107: 433–438.

    Article  Google Scholar 

  • Lotka, A. J. 1925. Elements of physical biology. Williams & Wilkins, Baltimore.

    Google Scholar 

  • McCook, L. J. 1994. Understanding ecological community succession: Causal models and theories: a review. Plant ecology 110: 115–147.

    Article  Google Scholar 

  • Morgan-Ernest, S. K., Brown, J. H., Thibault, K. M., White, E. P. & J. R. Goheen. 2008. Zero sum, the niche, and metacommunities: Long-term dynamics on community assembly. Am. Nat. 172: E257–269.

  • Myster, R. W. 2003. Seed regeneration mechanisms over fine spatial scales on recovering Coffee plantation and pasture in Puerto Rico. Plant Ecol. 166: 199–205.

    Article  Google Scholar 

  • ——— 2007. Introduction Pp 1–23 In: Post-agricultural succession in the Neotropics. R. W. Myster (ed.) Springer-Verlag, NY.

  • ——— 2009. Are productivity and richness consistently related after different crops in the Neotropics? Botany 87: 357–362.

    Article  Google Scholar 

  • ——— 2010. A comparison of tree replacement models in oldfields at Hutchenson Memorial Forest. J. Torrey Bot. Soc. 137: 113–119.

    Article  Google Scholar 

  • Myster, R. W. & L. R. Walker. 1997. Plant successional pathways on Puerto Rican landslides. J. Trop. Ecol. 13: 165–173.

  • Pacala, S. W., C. D. Canham & J. C. Silander. 1993. Forest models defined by field measurement: I. The design of a northeastern forest simulator. Can. J. For. Res. 23: 1980–1988.

    Article  Google Scholar 

  • Parrish, J. A. D. & F. A. Bazzaz. 1982. Niche responses of early and late successional tree seedlings on three resource gradients. Bulletin of the Torrey Botanical Club 109: 451–456.

    Article  Google Scholar 

  • Pickett, S. T. A. & F. A. Bazzaz. 1978. Organization of an assemblage of early successional species on a soil moisture gradient. Ecology 59: 1248–1255.

    Article  Google Scholar 

  • ———, J. Kolasa, J. J. Armesto & S. L. Collins. 1989. The ecological concept of disturbance and its expression at various hierarchical levels. Oikos 54: 129–136.

    Article  Google Scholar 

  • Queenborough, S. A., Burslem, D. F. R. P., Garwood, N. C. & R. Valencia. 2007. Neighborhood and community interactions determine the spatial pattern of tropical tree seedling survival. Ecology 88: 2248–2258.

  • Ribbens, E., J. A. Silander & S. W. Pacala. 1994. Seedling Recruitment in Forests: Calibrating Models to Predict Patterns of Tree Seedling Dispersion. Ecology 75: 1794–1806.

    Article  Google Scholar 

  • Skellam, J. G. 1951. Random dispersal in theoretical populations. Biometrika 38: 196–218.

    PubMed  CAS  Google Scholar 

  • Tilman, D. 1982. Resource competition and community structure. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • ——— 1985. The resource ratio hypothesis of plant succession. Am. Nat. 25: 827–852.

    Article  Google Scholar 

  • ——— 1988. Plant strategies and the dynamics and structure of plant communities. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Turkington, R. & J. L. Harper. 1979. The growth, distribution and neighbor relationships of Trifolium repens: a permanent pasture. I. Ordination, pattern and contact. J. Ecol. 67: 201–218.

    Article  Google Scholar 

  • Van Hulst, R. 1979. On the dynamics of vegetation: Markov chains as models of succession. Vegetatio 40: 3–14.

    Article  Google Scholar 

  • Wedin, D. A. & D. Tilman. 1990. Species effects in nitrogen cycling: a test with perennial grasses. Oecologia 84: 433–441.

    Google Scholar 

  • Yoda, K., T. Kira, H. Ogawa & K. Hozumi. 1963. Self-thinning in overcrowded pure stands under cultivated and natural conditions. J. Biol. Osaka City Uni. 14: 107–129.

    Google Scholar 

  • Zar, J. H. 1999. Biostatistical Analysis. 4th edition. Prentice-Hall.

Download references

Acknowledgements

I thank DL DeAngelis, M Palmer, J Lundholm, R Inouye, K Moloney, J Chase, PJ Burton and STA Pickett for commenting on a past draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall W. Myster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myster, R.W. Plants Replacing Plants: The Future of Community Modeling and Research. Bot. Rev. 78, 2–9 (2012). https://doi.org/10.1007/s12229-011-9091-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-011-9091-y

Keywords

Navigation