Skip to main content

Advertisement

Log in

Characterization and Primary Functional Analysis of BvCIGR, a Member of the GRAS Gene Family in Bambusa ventricosa

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

In Gramineae plants, carbon sequestration is closely related to the internodes development which is regulated by the gibberellins (GAs). Chitin-inducible gibberellin-responsive genes (CICR) are a member of the GRAS superfamily involved in the gibberellin signal transduction pathway and play roles in the development and defense of the plant. In this study, a CICR homolog gene (named BvCIGR) was cloned from the shoot tip of Bambusa ventricosa McClure with shorten internodes by rapid amplification of cDNA ends, which was 2143 bp in length encoding 545 amino acids with typical plant GRAS domain. Expression levels of BvCIGR varied in different positions of internodes in B. ventricosa (highest in the upper, followed by the middle and lowest in the bottom internodes). The results indicated that BvCIGR is possibly involved in the regulation of the internodal elongation of B. ventricosa, and has possible influence on the carbon sequestration potential in bamboo plantations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Literature Cited

  • Bolle, C. 2004. The role of GRAS proteins in plant signal transduction and development. Planta 218: 683–692.

    Article  PubMed  CAS  Google Scholar 

  • ———, C. Koncz & N. H. Chua. 2000. PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Genes Development 14: 1269–1278.

    PubMed  CAS  Google Scholar 

  • Chen, S. L., Q. P. Yang & Z. W. Guo. 2008a. Influence of principal environmental factors on shooting, growth and abnormal culm rate of Bambusa ventricosa. Journal of Sichuan Agricultural University 26(1): 117–120.

    Google Scholar 

  • ———, ——— & ———. 2008b. Effects of clump structure on new culm morphological variation of Bambusa ventricosa. Journal of Zhejiang Forestry College 25: 123–126.

    Google Scholar 

  • Day, R. B., N. Shibuya & E. Minami. 2003. Identification and characterization of two new members of the GRAS gene family in rice responsive to N-acetylchitooligosaccharide elicitor. Biochimica et Biophysica Acta 1625: 261–268.

    PubMed  CAS  Google Scholar 

  • ———, S. Tanabe, M. Koshioka, T. Mitsui, H. Itoh, M. Ueguchi-Tanaka, M. Matsuoka, H. Kaku, N. Shibuya & E. Minami. 2004. Two rice GRAS family genes responsive to N -acetylchitooligosaccharide elicitor are induced by phytoactive gibberellins: evidence for cross-talk between elicitor and gibberellin signaling in rice cells. Plant Molecular Biology 54: 261–272.

    Article  PubMed  CAS  Google Scholar 

  • Dill, A., H. S. Jung & T. P. Sun. 2001. The DELLA motif is essential for gibberellin-induced degradation of RGA. The Proceedings of the National Academy of Sciences USA 98: 14162–14167.

    Article  CAS  Google Scholar 

  • Hartweck, L. M. 2008. Gibberellin signaling. Planta 229: 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, S. & G. E. D. Oldroyd. 2009. GRAS-domain transcription factors that regulate plant development. Plant Signaling & Behavior 4(8): 698–700.

    Article  CAS  Google Scholar 

  • Isagi, Y., T. Kawahara, K. Kamo & H. Ito. 1997. Net production and carbon cycling in a bamboo Phyllostachys pubescens stand. Plant Ecology 130(1): 41–52.

    Article  Google Scholar 

  • Itoh, H., A. Shimada, M. Ueguchi-Tanaka, N. Kamiya, Y. Hasegawa, M. Ashikari & M. Matsuoka. 2005. Overexpression of a GRAS protein lacking the DELLA domain confers altered gibberellin responses in rice. The Plant Journal 44: 669–679.

    Article  PubMed  CAS  Google Scholar 

  • ———, M. Ueguchi-Tanaka, Y. Sato, M. Ashikari & M. Matsuoka. 2002. The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell 14: 57–70.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M. H., B. Kim, S. K. Song, J. O. Heo, N. I. Yu, S. A. Lee, M. Kim, D. G. Kim, S. O. Sohn, C. E. Lim, K. S. Chang, M. M. Lee & J. Lim. 2008. Large-scale analysis of the GRAS gene family in Arabidopsis thaliana. Plant Molecular Biology 67: 659–670.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S., H. Cheng, K. E. King, W. Wang, Y. He, A. Hussain, J. Lo, N. P. Harberd & J. Peng. 2002. Gibberellin regulated Arabidopsis seed germination via RGL2, a GAI/RGA-like gene shoes expression is up-regulated following imbibition. Genes & Development 16: 646–658.

    Article  CAS  Google Scholar 

  • Li, R., Z. C. Zhong & M. J. A. Werger. 1997. Studies on the dynamics of the bamboo shoots in Phyllostachys pubescens. Acta Phytoecol Sinica 21: 53–59.

    Google Scholar 

  • Matsui, T., P. K. Bhowmik & K. Yokozeki. 2004. A cDNA sequence encoding actin gene in moso bamboo shoot and its phylogenetic analysis. Asian Journal of Plant Sciences 3: 128–131.

    Article  Google Scholar 

  • Peng, J., P. Carol, D. E. Richards, K. E. King, R. J. Cowling, G. P. Murphy & N. P. Harberd. 1997. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes & Development 11: 3194–3205.

    Article  CAS  Google Scholar 

  • Pysh, L. D., J. W. Wysocka-Diller, C. Camilleri, D. Bouchez & P. N. Benfey. 1999. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. The Plant Journal 18: 111–119.

    Article  PubMed  CAS  Google Scholar 

  • Silverstone, A. L., C. N. Ciampaglio & T. P. Sun. 1998. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10: 155–169.

    Article  PubMed  CAS  Google Scholar 

  • Swofford, D. 2002. PAUP phylogenetic analysis using parsimony (*and Other Methods). Version 4.0b 10. Sinauer Associates, Sunderland, MA.

  • Tian, C. G., P. Wan, S. H. Sun, J. Y. Li & M. S. Chen. 2004. Genome-wide analysis of the GRAS gene family in rice and Arabidopsis. Plant Molecular Biology 54: 519–532.

    Article  PubMed  CAS  Google Scholar 

  • Tong, H., Y. Jin, W. Liu, F. Li, J. Fang, Y. Yin, Q. Qian, L. Zhu & C. Chu. 2009. Dwarf and low-tillering, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant Journal 58(5): 803–816.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, M. B., P. Yang, P. J. Gao & D. Q. Tang. 2011. Identification of differentially expressed sequence tags in rapidly elongating Phyllostachys pubescens internodes by suppressive subtractive hybridization. Plant Molecular Biology Reporter 29: 224–231.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a special grant from the National Natural Science Foundation of China (grant no. 31070590, 30371181 and 30771753) and grant of Natural Science Foundation of Zhejiang Province (grant no. Y3080002 and R303420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingqin Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, M., Zhang, Y. & Tang, D. Characterization and Primary Functional Analysis of BvCIGR, a Member of the GRAS Gene Family in Bambusa ventricosa . Bot. Rev. 77, 233–241 (2011). https://doi.org/10.1007/s12229-011-9079-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-011-9079-7

Keywords

Navigation