The Botanical Review

, Volume 76, Issue 1, pp 83–135 | Cite as

Fossil Record and Age of the Asteridae



The Asteridae is a group of some 80,000 species of flowering plants characterized by their fused corollas and iridoid compounds. Recent phylogenetic analyses have helped delimit the group and have identified four main clades within it; Cornales, Ericales, Lamiids and Campanulids, with the last two collectively known as the Euasteridae. A search for the oldest fossils representing asterids yielded a total of 261 records. Each of these fossils was evaluated as to the reliability of its identification. The oldest accepted fossils for each clade were used to estimate minimum ages for the whole of the Asteridae. The results suggest that the Asteridae dates back to at least the Turonian, Late Cretaceous (89.3 mya) and that by the Late Santonian-Early Campanian (83.5 mya) its four main clades were already represented in the fossil record.


Asteridae Campanulids Euasteridae Fossil Lamiids Minimum Age 


Las Asteridas son un grupo de unas 80,000 especies de plantas con flor caracterizadas por sus corolas fusionadas y compuestos iridoides. Análisis filogenéticos recientes han ayudado a delimitar al grupo y han identificado cuatro clados principales en él; Cornales, Ericales, Lamiidas y Campanulidas, con las últimas dos conocidas colectivamente como Euasteridas. Una búsqueda por los fósiles más antiguos que representan asteridas produjo un total de 261 registros. Cada uno de estos fósiles fue evaluado en cuanto a la confiabilidad de su identificación. Los fósiles aceptados más antiguos de cada clado se usaron para estimar edades mínimas para las Asteridas. Los resultados sugieren que las Asteridas datan al menos del Turoniano, Cretácico Tardío (89.3 ma) y que para el Santoniano Tardío-Campaniano Temprano (83.5 ma) sus cuatro clados principales ya estaban representados en el registro fósil.

Literature Cited

  1. Abbott, M. L. 1986. Petrified wood from the Paleocene, Black Peaks Formation, Big Bend National Park, Texas. Pages 141–142 in P. H. Pausé & R. G. Spears (eds.), Geology of the Big Bend area and Solitario Dome, Texas, West Texas Geological Society Fieldtrip March 12–15, 1986. Publ. 86–82.Google Scholar
  2. Albach, D. C., P. S. Soltis, D. E. Soltis & R. Olmstead. 1998. Phylogenetic analysis of the asteridae s.l. based on sequences of four genes. American Journal of Botany 85(6 suppl): 111.Google Scholar
  3. ———, ———, ——— & ———. 2001. Phylogenetic analysis of asterids based on sequences of four genes. Annals of the Missouri Botanical Garden 88(2): 163–212.Google Scholar
  4. ———, H. M. Meudt & B. Oxelman. 2005. Piecing together the “new” Plantaginaceae. American Journal of Botany 92(2): 297-315.Google Scholar
  5. Angiosperm Phylogeny Group. 1998. An ordinal classification of the families of flowering plants. Annals of the Missouri Botanical Garden 85(4): 531–553.Google Scholar
  6. ———. 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APGII. Botanical Journal of the Linnean Society 141(4): 399–436.Google Scholar
  7. ———. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APGIII. Botanical Journal of the Linnean Society 161(2): 105–121.Google Scholar
  8. Awasthi, N. 1969a. On the ocurrence of two new fossil woods belonging to the family Lecythidaceae in the Tertiary rocks of south India. The Palaeobotanist 18(1): 67–74.Google Scholar
  9. ———. 1969b. A fossil wood of Ebenaceae from the Tertiary of south India. The Palaeobotanist 18(2): 192–196.Google Scholar
  10. Backlund, A. 1996. Phylogeny of the dipsacales comprehensive summaries of Uppsala dissertations from the Faculty of Science and Technology, 243. Acta Universitatis Upsaliensis, Uppsala University, Uppsala, SwedenGoogle Scholar
  11. ——— & M. J. Donoghue. 1996. Morphology and phylogeny of the order Dipsacales. In: A. Backlund. Phylogeny of the Dipsacales. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 243. Acta Universitatis Upsaliensis, Uppsala University, Uppsala, Sweden.Google Scholar
  12. Bande, M. B. 1986. Fossil wood of Gmelina Linn. (Verbenaceae) from the Deccan Intertrappean Beds of Nawargaon with comments on the nomenclature of Tertiary fossil woods. The Palaeobotanist 35(2): 165–170.Google Scholar
  13. Barron, E. 1992. Presencia de Fraxinus excelsior Linne (Oleaceae, Gentianales) en el Mioceno superior de la depresión Ceretana; implicaciones tafonómicas y paleoecológicas. Revista Española de Paleontología 7(2): 101–108.Google Scholar
  14. Basinger, J. F. & D. C. Christophel. 1985. Fossil flowers and leaves of the Ebenaceae from the Eocene of southern Australia. Canadian Journal of Botany 63(10): 1825–1843.Google Scholar
  15. Becker, H. F. 1961. Oligocene plants from the Upper Ruby River Basin, South-Western Montana. The Geological Society of America Memoir 82. Waverly Press, New York.Google Scholar
  16. Bell, C. D. & M. J. Donoghue. 2005. Dating the Dipsacales: Comparing models, genes, and evolutionary implications. American Journal of Botany 92(2): 284–296.Google Scholar
  17. Benton, M. J. & P. C. J. Donoghue. 2007. Paleontological evidence to date the tree of life. Molecular Biology and Evolution 24(1): 26–53.PubMedGoogle Scholar
  18. Berry, E. W. 1914. The affinities and distribution of the lower Eocene flora of Southeastern North America. Proceedings of the American Philosophical Society 53(214): 129–250.Google Scholar
  19. ———. 1916. The lower Eocene floras of Southeastern North America. U. S. Geological Survey Professional Paper 91: 1–481.Google Scholar
  20. ———. 1922. A new genus of fossil fruit (Calatoloides, Eocene, Texas). American Journal of Science 5th series 3: 251–253.Google Scholar
  21. ———. 1930. Revision of the lower Eocene Wilcox flora of the southeastern States, with descriptions of new species, chiefly from Tennessee and Kentucky. U. S. Geological Survey Professional Paper 156: 1–196.Google Scholar
  22. ———. 1934. A lower lance florule from Harding County, South Dakota. U. S. Geological Survey Professional Paper 185-F: 127–133.Google Scholar
  23. Bones, T. J. 1979. Atlas of fossil fruits and seeds from North Central Oregon. OMSI Occasional Papers in Natural Science 1: 5–23Google Scholar
  24. Bremer, K., A. Backlund, B. Sennblad, U. Swenson, K. Andreasen, M. Hjertson, J. Lundberg, M. Backlund & B. Bremer. 2001. A Phylogenetic analysis of 100+ genera and 50+ families of euasterids based on morphological and molecular data with notes on possible higher level morphological synapomorphies. Plant Systematics and Evolution 229(3–4): 137–169.Google Scholar
  25. Bremer, B., K. Bremer, N. Heidari, P. Erixon, R. G. Olmstead, A. A. Anderberg, M. Källersjö & E. Barkhordarian. 2002. Phylogenetics of asterids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels. Molecular Phylogenetics and Evolution 24(2): 274–301.PubMedGoogle Scholar
  26. ———, E. M. Friis & B. Bremer. 2004. Molecular phylogenetic dating of asterid flowering plants shows early cretaceous diversification. Systematic Biology 53(3): 496–505.PubMedGoogle Scholar
  27. Bromham, L. & D. Penny. 2003. The modern molecular clock. Nature Reviews Genetics 4(3): 216–224.PubMedGoogle Scholar
  28. Brown, R. W. 1962. Paleocene flora of the Rocky Mountains and Great Plains. U. S. Geological Survey Professional Paper 375: 1–119.Google Scholar
  29. Call, V. B. & D. L. Dilcher. 1997. The fossil record of Eucommia (Eucommiaceae) in North America. American Journal of Botany 84(6): 798–814.Google Scholar
  30. Chandler, M. E. J. 1962. The Lower Tertiary floras of Southern England. II. Flora of the Pipe-Clay Series of Dorset (Lower Bagshot). British Museum (Natural History). London, UK.Google Scholar
  31. ———. 1964. The Lower Tertiary floras of Southern England. IV. A Summary and Survey of Findings in the light of Recent Botanical Observations. British Museum (Natural History). London, UK.Google Scholar
  32. Chandler, G. T. & G. M. Plunkett. 2004. Evolution in Apiales: nuclear and chloroplast markers together in (almost) perfect harmony. Botanical Journal of the Linnean Society 144(2): 123–147.Google Scholar
  33. Chase, M. W., D. E. Soltis, R. G. Olmstead, D. Morgan, D. H. Les, B. D. Mishler, M. D. Duvall, R. A. Price, H. G. Hills, Y. Qiu, K. A. Kron, J. H. Rettig, E. Conti, J. D. Palmer, J. R. Manhart, K. J. Sytsma, H. J. Michaels, W. J. Kress, K. G. Karol, W. D. Clark, M. Hedrén, B. S. Gaut, R. K. Jansen, K. Kim, C. F. Wimpee, J. F. Smith, G. R. Furnier, S. H. Strauss, Q. Xiang, G. M. Plunkett, P. S. Soltis, S. M. Swensen, S. E. Williams, P. A. Gadek, C. J. Quinn, L. E. Eguiarte, E. Golenberg, G. H., Jr. Learn, S. W. Graham, S. C. H. Barrett, S. Dayanadan & V. A. Albert. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Annals of the Missouri Botanical Garden 40(3): 528–580.Google Scholar
  34. Chelebayeva, A. I. 1984. Rod Cordia (Boraginaceae) v Paleogene Kamchatki i sopredel’nykh territoriy [The genus Cordia (Boraginaceae) from the Paleogene of Kamtchatka and adjacent territories]. Botanicheskiy Zhurnal 69(5): 605–615.Google Scholar
  35. Christophel, D. C. & J. F. Basinger. 1982. Earliest floral evidence for the Ebenaceae in Australia. Nature (London) 296(5856): 439–441.Google Scholar
  36. Cockerell, T. D. A. 1926. The antiquity of the Labiatae or Mint Family. Nature 118(2976): 696.Google Scholar
  37. ———. 1927. A supposed fossil catmint. Torreya 27(3): 54.Google Scholar
  38. Collinson, M. E. 1983. Fossil plants of the London Clay. Palaeontological Association Field Guides to Fossils No. 1. The Palaeontological Association. London.Google Scholar
  39. ———. 1988. The special significance of the Middle Eocene fruit and seed flora from Messel, West Germany. Courier Forschungsinstitut Senckenberg 107: 187–197.Google Scholar
  40. ———, M. C. Boulter & P. L. Holmes. 1993. Magnoliophyta (‘Angiospermae’). Pages 809–841 in M. J. Benton (ed.), The fossil record 2. Chapman and Hall. London, UK.Google Scholar
  41. Crane, P. R. & P. Herendeen. 1996. Cretaceous floras containing angiosperm flowers and fruits from eastern North America. Review of Palaeobotany and Palynology 90(3–4): 319–337.Google Scholar
  42. ———, ——— & E. M. Friis. 2004. Fossils and plant phylogeny. American Journal of Botany 91(10): 1683–1699.Google Scholar
  43. Crepet, W. L. 1996. Timing in the evolution of derived floral characters: Upper Cretaceous (Turonian) taxa with tricolpate and tricolpate-derived pollen. Review of Palaeobotany and Palynology 90(3–4): 339–359.Google Scholar
  44. ——— & T. F. Stuessy. 1978. A reinvestigation of the fossil Viguiera cronquistii (Compositae). Brittonia 30(4): 483–491.Google Scholar
  45. ——— & C. P. Daghlian. 1981. Lower Eocene and Paleocene Gentianaceae: Floral and Palynological Evidence. Science, new series 214(4516): 75–77.Google Scholar
  46. ———, K. C. Nixon & M. A. Gandolfo. 2004. Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. American Journal of Botany 91(10): 1666–1682.Google Scholar
  47. Cronquist, A. 1981. An integrated system of classification of flowering plants. Columbia University Press, New York, NY, USA.Google Scholar
  48. Dilcher, D. L. & G. E. Dolph. 1970. Fossil Leaves of Dendropanax from Eocene Sediments of Southeastern North America. American Journal of Botany 57(2): 153–160.Google Scholar
  49. Donoghue, P. C. J. & M. J. Benton. 2007. Rocks and clocks: calibrating the tree of life using fossils and molecules. Trends in Ecology and Evolution 22(8): 424–431.PubMedGoogle Scholar
  50. Donoghue, M. J., C. D. Bell & R. C. Winkworth. 2003. The evolution of reproductive characters in Dipsacales. International Journal of Plant Sciences 164(5 suppl): S453–S464.Google Scholar
  51. Elsik, W. C. 1968. Palynology of a Paleocene Rockdale lignite, Milam county, Texas. II. Morphology and taxonomy (end). Pollen et Spores 10(3): 599–664.Google Scholar
  52. Fan, C. & Q.-Y. Xiang. 2003. Phylogenetic analyses of Cornales based on 26S rRNA and combined 26S rDNA-matK-rbcL sequence data. American Journal of Botany 90(9): 1357–1372.Google Scholar
  53. Friis, E. M. 1984. Preliminary report of Upper Cretaceous angiosperms reproductive organs from Sweden and their level of organization. Annals of the Missouri Botanical Garden 71(2): 403–418.Google Scholar
  54. ———. 1985. Actinocalyx gen. nov., sympetalous angiosperm flowers from the Upper Cretaceous of Southern Sweden. Review of Palaeobotany and Palynology 45(3–4): 171–183.Google Scholar
  55. ———. 1990. Silvianthemum suecicum gen. et sp. nov., a new saxifragalean flower from the Late Cretaceous of Sweden. Biologiske Skrifter, Det Kongelige Danske Videnskabernes Selskab 36: 1–35.Google Scholar
  56. ——— & A. Skarby. 1982. Scandianthus gen. nov., Angiosperm flowers of Saxifragalean Affinity from the Upper Cretaceous of Southern Sweden. Annals of Botany new series 50(5): 569–583.Google Scholar
  57. ———, K. R. Pedersen & P. R. Crane. 2006. Cretaceous angiosperm flowers: Innovation and evolution in plant reproduction. Palaeogeography, Palaeoclimatology, Palaeoecology 232(2–4): 251–293.Google Scholar
  58. Gabel, M. L. 1987. A fossil Lithospermum (Boraginaceae) from the Tertiary of South Dakota. American Journal of Botany 74(11): 1690–1693.Google Scholar
  59. Gandolfo, M. A., K. C. Nixon & W. L. Crepet. 1998. Tylerianthus crossmanensis gen. et sp. nov. (aff. Hydrangeaceae) from the Upper Cretaceous of New Jersey. American Journal of Botany 85(3): 376–386.Google Scholar
  60. Geuten, K., E. Smets, P. Schols, Y.-M. Yuan, S. Janssens, P. Küpfer & N. Pyck. 2004. Conflicting phylogenies of balsaminoid families and the polytomy in Ericales: combining data in a Bayesian framework. Molecular Phylogenetics and Evolution 31(2): 711–729.PubMedGoogle Scholar
  61. Gibson, N., K. W. Kiernan & M. K. Macphail. 1987. A fossil bolster plant from the King River, Tasmania. Papers and Proceedings of the Royal Society of Tasmania 121: 35–42.Google Scholar
  62. Giraud, B., R. Bussert & E. Schrank. 1992. A new theacean wood from the Cretaceous of northern Sudan. Review of Palaeobotany and Palynology 75(3–4): 289–299.Google Scholar
  63. Goloboff, P. A. 1999. NONA version 2.0. Program distributed by the author. Tucumán, Argentina. <>.
  64. Gradstein, F. M., J. G. Ogg, A. G. Smith, W. Bleeker & L. J. Lourens. 2004. A New Geologic Time Scale, with special reference to Precambrian and Neogene from the Dabie Mountains, central China. Episodes 27(2): 83–100.Google Scholar
  65. Graham, A. 1977. New records of Pelliceria (Theaceae/Pelliceriaceae) in the Tertiary of the Caribbean. Biotropica 9(1): 48–52.Google Scholar
  66. ———. 1996. A contribution to the geologic history of the Compositae. Pages 123–140 in D. J. N. Hind & H. J. Beentje (eds.), Compositae: Systematics. Proceedings of the International Compositae Conference, Kew, 1994. Vol. 1.The Royal Botanic Gardens, Kew.Google Scholar
  67. ———. 1999. Studies in Neotropical paleobotany; XIII, An Oligo-Miocene palynoflora from Simojovel (Chiapas, Mexico). American Journal of Botany 86(1): 17–31.Google Scholar
  68. ———. 2009. Fossil record of the Rubiaceae. Annals of the Missouri Botanical Garden 96(1): 90–108.Google Scholar
  69. ——— & D. M. Jarzen. 1969. Studies in Neotropical Paleobotany. I. The Oligocene Communities of Puerto Rico. Annals of the Missouri Botanical Garden 56(3): 308–357.Google Scholar
  70. Graur, D. & W. Martin. 2004. Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends in Genetics 20(2): 80–86.PubMedGoogle Scholar
  71. Gros, J. P. 1993. Xylotomies d’un nouveau bois d’Apocynaceae du Cenozoique de France, Euholarrhenoxylon aisnense n. g. et n.sp. et du bois actuel de comparaison, Holarrhena floribunda (G. Don) Dur & Schinz, Apocynaceae. Bulletin Mensuel—Societe Linneenne de Lyon, (France) 62(1): 11–25.Google Scholar
  72. Grote, P. J. & D. L. Dilcher. 1989. Investigations of angiosperms from the Eocene of North America; a new genus of Theaceae based on fruit and seed remains. Botanical Gazette 150(2): 190–206.Google Scholar
  73. ——— & ———. 1992. Fruits and Seeds of Tribe Gordonieae (Theaceae) from the Eocene of North America. American Journal of Botany 79(7): 744–753.Google Scholar
  74. Hedges, S. B. & S. Kumar. 2003. Genomic clocks and evolutionary timescales. Trends in Genetics 19(4): 200–206.Google Scholar
  75. Herendeen, P. S., S. Magallón-Puebla, R. Lupia, P. R. Crane & J. Kobylinska. 1999. A preliminary conspectus of the Allon Flora from the Late Cretaceous (Late Santonian) of Central Georgia, U.S.A. Annals of the Missouri Botanical Garden 86(2): 407–471.Google Scholar
  76. Hermsen, E. J. & J. R. Hendricks. 2008. W(h)ither fossils? Studying morphological character evolution in the age of molecular sequences. Annals of the Missouri Botanical Garden 95(1): 72–100.Google Scholar
  77. ———, K. C. Nixon & W. L. Crepet. 2006. The impact of extinct taxa on understanding the early evolution of Angiosperm clades: an example incorporating fossil reproductive structures of Saxifragales. Plant Systematics and Evolution 260(2–4): 141–169.Google Scholar
  78. Hufford, L. 1992. Phylogeny of Asteridae: An Introduction. Annals of the Missouri Botanical Garden 79(2): 207–208.Google Scholar
  79. Huzioka, K. 1961. A new Palaeogene species of the genus Eucommia from Hokkaido, Japan. Transactions and Proceedings of the Palaeontological Society of Japan. New Series 41: 9–12.Google Scholar
  80. Kårehed, J. 2001. Multiple origin of the tropical forest tree family Icacinaceae. American Journal of Botany 88(12): 2259–2274.Google Scholar
  81. Keller, J. A., P. S. Herendeen & P. R. Crane. 1996. Fossil flowers and fruits of the Actinidiaceae from the Campanian (Late Cretaceous) of Georgia. American Journal of Botany 83(4): 528–539.Google Scholar
  82. Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press, New York, USA.Google Scholar
  83. Kirchheimer, F. 1949. Die Symplocaceen der erdgeschichtlichen Vergangenheit. Palaeontographica Abteilung B: Palaeophytologie 90: 1–50.Google Scholar
  84. Knapp, S. 2002. Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the Solanaceae. Journal of Experimental Botany 53(377): 2001–2022.PubMedGoogle Scholar
  85. Knobloch, E. & D. H. Mai. 1986. Monographie der Fruchte and Samen in der Kreide von Mitteleuropa. Rozpravy Ustredniho Ustavu Geologickeho Praha 47: 1–219.Google Scholar
  86. Lagenheim, J. H., B. L. Hackner & A. Bartlett. 1967. Mangrove pollen at the depositional site of Oligo-Miocene amber from Chiapas, Mexico. Botanical Museum Leaflets 21(10): 289–324.Google Scholar
  87. Łańcucka-Środoniowa, M. 1977. New herbs described from the Tertiary of Poland. Acta Palaeobotanica 18(1): 37–44.Google Scholar
  88. ———. 1979. Macroscopical plant remains from the freshwater Miocene of the Nowy Sacz Basin (West Carpathians, Poland). Acta Palaeobotanica 20(1): 3–117.Google Scholar
  89. Langley, C. H. & W. M. Fitch. 1974. An estimation of the constancy of the rate of molecular evolution. Journal of Molecular Evolution 3(3): 161–177.PubMedGoogle Scholar
  90. Leopold, E. B. & S. T. Clay-Poole. 2001. Florissant leaf and pollen floras of Colorado compared; climatic implications. Pages 17–69 in E. Evanoff, G. Wodzicki, M. Kathryn & K. R. Johnson. Fossil flora and stratigraphy of the Florissant Formation, Colorado. Proceedings of the Denver Museum of Natural History 4, no. 1.Google Scholar
  91. Lott, T. A., S. R. Manchester & D. L. Dilcher. 1998. A unique and complete polemoniaceous plant from the middle Eocene of Utah, USA. Review of Palaeobotany and Palynology 104(1): 39–49.Google Scholar
  92. Lundberg, J. & K. Bremer. 2003. A phylogenetic study of the Order Asterales using one morphological and three molecular data sets. International Journal of Plant Sciences 164(4): 553–578.Google Scholar
  93. MacGinitie, H. D. 1953. Fossil plants of the Florissant Beds, Colorado. Carnegie Institution of Washington Contributions to Paleontology 559: 1–198.Google Scholar
  94. ———. 1969. The Eocene Green River flora of Northwestern Colorado and Northastern Utah. University of California Publications in Geological Sciences 83. Berkeley, USA.Google Scholar
  95. Macphail, M. K. & R. S. Hill. 1994. K-Ar dated palynofloras in Tasmania; 1, Early Oligocene, Proteacidites tuberculatus Zone sediments, Wilmot Dam, northwestern Tasmania. Papers and Proceedings of the Royal Society of Tasmania 128: 1–15.Google Scholar
  96. Mai, D. H. 1987. Neue Fruchte und Samen aus Palaozanen Ablagerungen Mitteleuropas. Feddes Repertorium 98: 197–229 + 10pl.Google Scholar
  97. ——— & E. Martinetto. 2006. A reconsideration of the diversity of Symplocos in the European Neogene on the basis of fruit morphology. Review of Palaeobotany and Palynology 140(1–2): 1–26.Google Scholar
  98. Magallón, S. A. 2004. Dating lineages: Molecular and paleontological approaches to the temporal framework of clades. International Journal of Plant Sciences 165(4 suppl): S7–S21.Google Scholar
  99. ——— & S. R. S. Cevallos-Ferriz. 1994. Eucommia constans n. sp. fruits from Upper Cenozoic strata of Puebla, Mexico: Morphological and anatomical comparison with Eucommia ulmoides Oliver. International Journal of Plant Sciences 155(1): 80–85.Google Scholar
  100. ———, P. R. Crane & P. S. Herendeen. 1999. Phylogenetic Pattern, Diversity, and Diversification of Eudicots. Annals of the Missouri Botanical Garden 86(2): 297–372.Google Scholar
  101. Manchester, S. R. 1994. Fruits and seeds of the middle Eocene Nutbeds Flora, Clarno Formation, North Central Oregon. Palaeontographica Americana 58: 1–205.Google Scholar
  102. ———. 1999. Biogeographical Relationships of North American Tertiary Floras. Annals of the Missouri Botanical Garden 86(2): 472–522.Google Scholar
  103. ———. 2001. Update on the megafossil flora of Florissant, Colorado. Pages 137–161 in E. Evanoff, G. Wodzicki, M. Kathryn & K. R. Johnson (eds.), Fossil flora and stratigraphy of the Florissant Formation, Colorado. Proceedings of the Denver Museum of Natural History 4, no. 1.Google Scholar
  104. ———. 2002. Leaves and fruits of Davidia (Cornales) from the Paleocene of North America. Systematic Botany 27(2): 368–382.Google Scholar
  105. ——— & M. J. Donoghue. 1995. Winged fruits of Linneeae (Caprifoliaceae) in the Tertiary of Western North America: Diplodipelta gen. nov. International Journal of Plant Sciences 156(5): 709–722.Google Scholar
  106. ———, Z.-D. Chen, A.-M. Lu & K. Uemura. 2009. Eastern Asian endemic seed plant genera and their paleogeographic history throughout the Northern Hemisphere. Journal of Systematics and Evolution 47(1): 1–42.Google Scholar
  107. Martin, H. A. 1977. The history of Ilex (Aquifoliaceae) with special reference to Australia: evidence from pollen. Australian Journal of Botany 25(6): 655–673.Google Scholar
  108. ———. 2000. Re-assignment of the affinities of the fossil pollen type Tricolpites trioblatus Mildenhall and Pocknall to Wilsonia (Convolvulaceae) and a reassessment of the ecological interpretations. Review of Palaeobotany and Palynology 111(3–4): 237–251.PubMedGoogle Scholar
  109. Martínez-Millán, M., W. L. Crepet & K. C. Nixon. 2009. Pentapetalum trifasciculandricus gen. et sp. nov., a thealean fossil flower from the Raritan Formation, New Jersey, USA (Turonian, Late Cretaceous). American Journal of Botany 96(5): 933–949.Google Scholar
  110. Massalongo, A. 1851. Sopra le piante fossili dei terreni terziarj del Vicentino. A. Bianchi Padova.Google Scholar
  111. Mathewes, R. W. & R. C. Brooke. 1971. Fossil Taxodiaceae and new angiosperm macrofossils from Quilchema British Columbia. Syesis 4(1–2): 209–216.Google Scholar
  112. Mathur, A. K. & U. B. Mathur. 1985. Boraginaceae (angiosperm) seeds and their bearing on the age of Lameta Beds of Gujarat. Current Science 54(20): 1070–1071.Google Scholar
  113. Mehrotra, R. C. 2000. Study of plant megafossils from the Tura Formation of Nangwalbibra, Garo Hills, Meghalaya, India. The Palaeobotanist 49(2): 255–237.Google Scholar
  114. Meijer, J. J. F. 2000. Fossil woods from the late cretaceous Aachen formation. Review of Palaeobotany and Palynology 112(4): 297–336.PubMedGoogle Scholar
  115. Melchior, R. C. 1976. Oreopanax dakotensis, a new species of the Araliaceae from the Paleocene of North Dakota. Scientific Publications of the Science Museum of Minnesota new series 3(3): 1–8.Google Scholar
  116. Mildenhall, D. C. 1980. New Zealand late Cretaceous and Cenozoic plant biogeography: a contibution. Palaeogeography, Palaeoclimatology, Palaeoecology 31(3–4): 197–233.Google Scholar
  117. Nixon, K. C. 2002. Winclada ver. 1.00.08. Published by the author, Ithaca, NY, USA. <>.
  118. ——— & W. L. Crepet. 1993. Late cretaceous fossil flowers with ericalean affinity. American Journal of Botany 80(6): 616–623.Google Scholar
  119. Olmstead, R. G., H. J. Michaels, K. M. Scott & J. D. Palmer. 1992. Monophyly of the Asteridae and Identification of Their Major Lineages Inferred From DNA Sequences of rbcL. Annals of the Missouri Botanical Garden 79(2): 249–265.Google Scholar
  120. ———, B. Bremer, K. M. Scott & J. D. Palmer. 1993. A parsimony analysis of the Asteridae sensu lato Based on rbcL Sequences. Annals of the Missouri Botanical Garden 80(3): 700–722.Google Scholar
  121. Oxelman, B., P. Kornhall, R. G. Olmstead & B. Bremer. 2005. Further disintegration of Scrophulariaceae. Taxon 54(2): 411–425.Google Scholar
  122. Piel, K. M. 1971. Palynology of Oligocene sediments from central British Columbia. Canadian Journal of Botany 49(11): 1885–1920 + 17pl.Google Scholar
  123. Pigg, K. B., S. R. Manchester & M. L. DeVore. 2008. Fruits of Icacinaceae (Tribe Iodeae) from the Late Paleocene of western North America. American Journal of Botany 95(7): 824–832.Google Scholar
  124. Pocknall, D. T. 1987. Paleoenvironments and age of the Wasatch Formation (Eocene), Powder River Basin, Wyoming. Palaios 2(4): 368–376.Google Scholar
  125. Pole, M. S. 1996. Plant macrofossils from the Foulden Hills Diatomite (Miocene), central Otago, New Zealand. Journal of the Royal Society of New Zealand 26(1): 1–39.CrossRefGoogle Scholar
  126. Prakash, U. & R. Dayal. 1964. Barringtonioxylon eopterocarpum sp. nov., a fossil wood of Lecythidaceae from the Deccan Intertrappean beds of Mahurzari. The Palaeobotanist 13(1): 25–29.Google Scholar
  127. ———. & P. P. Tripathi. 1969. Fossil woods from the Tipam sandstones near Hailakandi, Assam. The Palaeobotanist 18(2): 183–191.Google Scholar
  128. Prasad, M. 1988. Some more fossil woods from the lower Siwalik sediments of Kalagarh, Uttar Pradesh, India. Geophytology 18(2): 135–144 + 3 pl.Google Scholar
  129. ———. 1993. Siwalik (middle Miocene) woods from the Kalagarh area in the Himalayan foot hills and their bearing on palaeoclimate and phytogeography. Review of Palaeobotany and Palynology 76(1): 49–82.Google Scholar
  130. ——— & U. M. S. Pradhan. 1998. Study on plant fossils from the siwalik sediments of far western Nepal. The Palaeobotanist 47(1): 99–109.Google Scholar
  131. Pulquerio, M. J. F. & R. A. Nichols. 2007. Dates from the molecular clock: how wrong can they be? Trends in Ecology and Evolution 22(4): 180–184.PubMedGoogle Scholar
  132. Reid, E. M. & M. E. J. Chandler. 1926. Catalogue of Cainzoic plants in the Department of Geology. Vol. 1. The Brembridge Flora. British Museum (Natural History), London, UK.Google Scholar
  133. ——— & ———. 1933. The London clay flora. British Museum (Natural History), London, UK.Google Scholar
  134. Rodriguez de Sarmiento, M. N. & J. Durango de Cabrera. 1995. Hallazgos de Remijia tenuiflorifolla Berry (Rubiaceae) con restos fungicos, Laguna del Hunco, Terciario, Chubut, Argentina. Acta Geologica Leopoldensia 42: 139–145.Google Scholar
  135. Salard-Cheboldaeff, M. 1978. Sur la palynoflore Maestrichtiene et Tertiaires du Bassin sédimentaire littoral du Cameroun. Pollen et Spores 20(2): 215–260.Google Scholar
  136. Sanderson, M. J. 1997. A Nonparametric Approach to Estimating Divergence Times in the Absence of Rate Constancy. Molecular Biology and Evolution 14(12): 1218–1231.Google Scholar
  137. ———. 2002. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution 19(1): 101–109.PubMedGoogle Scholar
  138. ———, J. L. Thorne, N. Wikström & K. Bremer. 2004. Molecular evidence on plant divergence times. American Journal of Botany 91(10): 1656–1665.Google Scholar
  139. Saporta, G. de. 1862. Études sur la végétation du sud-est de la France à l’époque Tertiaire. Annales des Sciences Naturelles 4e Série Botanique 17: 191–311 + 14 pl.Google Scholar
  140. ———. 1873. Études sur la végétation du sud-est de la France à l’époque Tertiaire. Supplément 1, Révision de la flore des Gypses d’Aix. Troisième fascicule. Description des espéces Dicotylédones. Annales des Sciences Naturelles 5e Série Botanique 18: 23–146 + 12 pl.Google Scholar
  141. ———. 1889. Dernières adjonctions a la Flore fossile d’Aix-en-Provence. Description des espèces-deuxième partie. Annales des Sciences Naturelles 7e Série Botanique 10: 1–192 + 20 pl.Google Scholar
  142. Savolainen, V., M. W. Chase, S. B. Hoot, M. C. Morton, D. E. Soltis, C. Bayer, M. F. Fay, A. Y. De Bruijn, S. Sullivan & Y. Qiu. 2000. Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. Systematic Biology 49(2): 306–362.PubMedGoogle Scholar
  143. Schönenberger, J. & E. M. Friis. 2001. Fossil flowers of ericalean affinity from the Late Cretaceous of Southern Sweden. American Journal of Botany 88(3): 467–480.PubMedGoogle Scholar
  144. ———, A. A. Anderberg & K. J. Sytsma. 2005. Molecular phylogenetics and patterns of floral evolution in the Ericales. International Journal of Plant Sciences 166(2): 265–288.Google Scholar
  145. Schweigert, G. 1992. Zur Altersstellung der Floren von Riggau und Friedersreuth (Hessenreuther Forst, Oberpfalz) mit Beschreibung von Styrax hradekense (Kvacek & Buezek) n. comb [The age of the Riggau and Friedersreuth floras, Hessenreuth Forest, Upper Palatinate, with a description of Styrax hradekense, n. comb]. Geologische Blaetter fuer Nordost-Bayern und Angrenzende Gebiete 42(3-4): 229–244.Google Scholar
  146. Scott, R. A. & E. S. Barghoorn. 1957. Phytocrene microcarpa—a new species of Icacinaceae based on Cretaceous fruits from Kreischerville, New York. The Palaeobotanist 6(1): 25–28.Google Scholar
  147. Scott, L., A. Cadman & I. McMillan. 2006. Early history of Cainozoic Asteraceae along the Southern African west coast. Review of Palaeobotany and Palynology 142(1–2): 47–52.Google Scholar
  148. Sole de Porta, N. 1960. Observaciones palinológicas sobre el plioceno de Cartagena (Colombia). Boletin de Geología (Bucaramanga) 4: 45–50.Google Scholar
  149. Soltis, D. E., P. E. Soltis, M. W. Chase, M. E. Mort, D. C. Albach, M. Zanis, V. Savolainen, W. H. Hahn, S. B. Hoot, M. F. Fay, M. Axtell, S. M. Swensen, L. M. Prince, W. J. Kress, K. C. Nixon & J. S. Farris. 2000. Angiosperm phylogeny inferred from 18S rDNA, rbcL and atpB sequences. Botanical Journal of the Linnean Society 133(4): 381–461.Google Scholar
  150. ———, M. A. Gitzendanner & P. E. Soltis. 2007. A 567-taxon data set for angiosperms: The challenges posed by Bayesian analyses of large data sets. International Journal of Plant Sciences 168(2): 137–157.Google Scholar
  151. Stockey, R. A., B. A. Lepage & K. Pigg. 1998. Permineralized fruits of Diplopanax (Cornaceae, Mastixioideae) from the Middle Eocene Princeton Chert of British Columbia. Review of Palaeobotany and Palynology 103(3–4): 223–234.Google Scholar
  152. Szafer, W. 1961. Miocene flora from Stare Gliwice in Upper Silesia. Instytut Geologiczny Prace, XXXIII. Wydawnictwa Geologiczne, Warsaw.Google Scholar
  153. Takahashi, M., P. R. Crane & H. Ando. 1999. Fossil flowers and associated plant fossils from the Kamikitaba locality (Ashizawa Formation, Futaba Group, Lower Coniacian, Upper Cretaceous) of Northeast Japan. Journal of Plant Research 112(2): 187–206.Google Scholar
  154. ———, ——— & S. R. Manchester. 2002. Hironoia fusiformis gen. et sp. nov.. A cornalean fruit from the Kamikitaba locality (Upper Cretaceous, Lower Coniacian) in Northeastern Japan. Journal of Plant Research 115(6): 463–473.PubMedGoogle Scholar
  155. Takhtajan, A. 1997. Diversity and classification of flowering plants. Columbia University Press, New York, NY, USA.Google Scholar
  156. Tanai, T. 1990. Euphorbiaceae and Icacinaceae from the Paleogene of Hokkaido. Japan. Bulletin of the National Science Museum of Tokyo. Series C: Geology and Paleontology 16(3): 91–118.Google Scholar
  157. Thayn, G. F., W. D. Tidwell & W. L. Stokes. 1985. Flora of the lower cretaceous cedar mountain formation of Utah and Colorado. Part III: Icacinoxylon pittiense n. sp. American Journal of Botany 72(2): 175–180.Google Scholar
  158. Tiffney, B. H. 1999. Fossil fruit and seed flora from the Early Eocene Fisher/Sullivan Site. Pages 139–159 in R. E. Weems & G. J. Grimsley (eds.), Early Eocene vertebrates and plants from the Fisher/Sullivan Site (Nanjemoy Formation) Stafford County, Virginia. Virginia Division of Mineral Resources Publication.Google Scholar
  159. ——— & K. K. Haggard. 1996. Fruits of Mastixioideae (Cornaceae) from the Paleogene of western North America. Review of Palaeobotany and Palynology 92(1–2): 29–54.Google Scholar
  160. Tralau, H. 1964. The genus Trapella Olivier in the Tertiary of Europe. Botaniska Notiser 117(2): 119–123.Google Scholar
  161. ———. 1965. Die Gattung Trapella im zentraleuropaeischen Tertiaer. Geologisches Jahrbuch 82: 771–775.Google Scholar
  162. Trivedi, B. S. & S. K. Chaturvedi. 1972. Voyrioseminites magnus gen et sp. nov. a fossil seed from Tertiary coal of Malaya. Geophytology 1(2): 161–164 + 1pl.Google Scholar
  163. Vassiljev, I. V. 1976. Some representatives of Anacardiaceae and Apocynaceae in the Palaeogene floras of western Kazakhstan, U.S.S.R. The Palaeobotanist 25: 543–548.Google Scholar
  164. Vaudois-Miéja, N. 1983. Extension paléogéographique en Europe de l’actuel genre asiatique Rehderodendron Hu (Styracacées). Comptes-Rendus des Seances de l’Academie des Sciences, Série 2: Mecanique-Physique, Chimie, Sciences de l’Univers, Sciences de la Terre 296(1): 125–130.Google Scholar
  165. Wagenitz, G. 1992. The Asteridae: Evolution of a concept and its present status. Annals of the Missouri Botanical Garden 79(2): 209–217.Google Scholar
  166. Welch, J. J. & L. Bromham. 2005. Molecular dating when dates vary. Trends in Ecology and Evolution 20(6): 320–327.PubMedGoogle Scholar
  167. Wheeler, E., M. Lee & L. C. Matten. 1987. Dicotyledonous woods from the Upper Cretaceous of southern Illinois. Botanical Journal of the Linnean Society 95(2): 77–100.Google Scholar
  168. Wikström, N., V. Savolainen & M. W. Chase. 2001. Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society of London series B 268(1482): 2211–2220.PubMedGoogle Scholar
  169. Wilde, V. 1989. Untersuchungen zur Systematik der Blattreste aus dem Mitteleozän der Grube Messel bei Darmstadt (Hessen, Bundesrepublik Deutschland). Courier Forschungsinstitut Senckenberg 115: 1–213.Google Scholar
  170. Wolfe, J. A. 1964. The Miocene floras from Fingerrock Wash Southwestern Nevada. U. S. Geological Survey Professional Paper 454–N: N1–N36 + 12 pl.Google Scholar
  171. ——— & H. E. Schorn. 1989. Paleoecologic, paleoclimatic, and evolutionary significance of the Oligocene Creede Flora, Colorado. Paleobiology 15(2): 180–198.Google Scholar
  172. ——— & ———. 1990. Taxonomic revision of the Spermatopsida of the Oligocene Creede Flora, southern Colorado. U. S. Geological Survey Bulletin 1923: 1-40.Google Scholar
  173. Xiang, Q.-Y., M. L. Moody, D. E. Soltis, C. Fan & P. S. Soltis. 2002. Relationships within Cornales and circumscription of Cornaceae—matK and rbcL sequence data and effects of outgroups and long branches. Molecular Phylogenetics and Evolution 24(1): 35–57.PubMedGoogle Scholar
  174. Zamaloa, M. C. 2000. Palinoflora y ambiente en el Terciario del nordeste de Tierra del Fuego, Argentina. Revista del Museo Argentino de Ciencias Naturales 2(1): 43–51.Google Scholar
  175. Zavada, M. S. & S. E. de Villiers. 2000. Pollen of the Asteraceae from the Paleocene-Eocene of South Africa. Grana 39(1): 39–45.Google Scholar
  176. Zhang, W.-H., Z.-D. Chen, J.-H. Li, H.-B. Chen & Y.-C. Tang. 2003. Phylogeny of Dipsacales s. l. based on chloroplast trnL-F and ndhF sequences. Molecular Phylogenetics and Evolution 26(2): 176–189.PubMedGoogle Scholar
  177. Zuckerkandl, E. & L. Pauling. 1962. Molecular disease, evolution, and genetic heterogeneity. Pp 189–225. In: M. Kasha & B. Pullman (eds). Horizons in biochemistry. Academic Press, New York, USA.Google Scholar
  178. ——— & ———. 1965. Evolutionary divergence and convergence in proteins Pages 97–166 in Bryson, V. and H. J. Vogel (eds.), Evolving genes and proteins. Academic Press, New York, USA.Google Scholar

Copyright information

© The New York Botanical Garden 2010

Authors and Affiliations

  1. 1.L. H. Bailey Hortorium, Department of Plant BiologyCornell UniversityIthacaUSA

Personalised recommendations