Skip to main content
Log in

Petal micromorphology and its systematic implications in Rosaceae tribe Spiraeeae

  • Original Research
  • Published:
Brittonia Aims and scope Submit manuscript

Abstract

We used scanning electron microscopy to describe petal epidermal cell patterns and evaluate their systematic implications for 22 representative taxa belonging to all 9 genera of the Rosaceae tribe Spiraeeae, including the monotypic Korean genus Pentactina. Characters of both the adaxial and abaxial surfaces of the petal epidermis, including cell type (papillose conical cells, papillose knobby rugose cells, or tabular rugose cells), anticlinal wall shape (sinuous or curved), and cuticle sculpturing (striate or rugose) were observed. Here, we present the first comprehensive analysis of the tribe based on petal micromorphological data in the context of a molecular phylogeny. We conclude that petal epidermal characters provide strong evidence in support of the independent taxonomic position of the Korean endemic genus Pentactina. Moreover, mapping epidermal characters on the molecular phylogeny indicates that some of the characters are synapomorphies for clades within the tribe. Thus, this study presents new perspectives for future work on the evolution of morphological characters in tribe Spiraeeae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Literature cited

  • Akçın, Ö. E. 2009. Micromorphological and anatomical studies on petals of 11 Turkish Onosma L. (Boraginaceae) taxa. Bangladesh Journal of Plant Taxonomy 16: 157–164.

    Article  Google Scholar 

  • Angulo, M. B. & M. Dematteis. 2014. Floral microcharacters in Lessingianthus (Vernonieae, Asteraceae) and their taxonomic implications. Plant Systematics and Evolution 300: 1925–1940.

    Article  Google Scholar 

  • Baagøe, J. 1977. Taxonomic application of ligule microcharacters in Compositae. Svensk Botanisk Tidskrift 71: 193–223.

    Google Scholar 

  • Baagøe, J. 1980. SEM-studies in ligules of Lactuceae (Compositae). Svensk Botanisk Tidskrift 75: 199–217.

    Google Scholar 

  • Bailes, E. J. & B. J. Glover. 2018. Intraspecific variation in the petal epidermal cell morphology of Vicia faba L. (Fabaceae). Flora 244: 29–36.

    Article  PubMed  Google Scholar 

  • Barone Lumaga, M. R., G. Pellegrino, F. Bellusci, E. Perrotta, I. D. A. Perrotta & A. Musacchio. 2012. Comparative floral micromorphology in four sympatric species of Serapias (Orchidaceae). Botanical Journal of the Linnean Society 169: 714–724.

    Article  Google Scholar 

  • Barthlott, W. 1981. Epidermal and seed surface characters of plants: systematic applicability and some evolutionary aspects. Nordic Journal of Botany 1: 345–355.

    Article  Google Scholar 

  • Barthlott, W. 1990. Scanning electron microscopy of the epidermal surface in plants. Pp. 69–94. In: D. Claugher (ed.), Scanning electron microscopy in taxonomy and functional morphology. Clarendon Press, Oxford, UK.

    Google Scholar 

  • Businský, R. & L. Businská. 2002. The genus Spiraea in cultivation in Bohemia, Moravia and Slovakia. Acta Pruhoniciana 72: 1–165.

    Google Scholar 

  • Christensen, K. I. & H. V. Hansen. 1998. SEM studies of epidermal patterns of petals in the angiosperms. Opera Botanica 135: 5–91.

    Google Scholar 

  • Chung, G. Y., K. S. Chang, J.-M. Chung, H. J. Choi, W.-K. Paik & J.-O. Hyun. 2017. A checklist of endemic plants on the Korean Peninsula. Korean Journal of Plant Taxonomy 47: 264–288.

    Article  Google Scholar 

  • Chwil, M. 2011. Micromorphology and anatomy of the floral elements of Tradescantia × andersoniana W. Ludw. Rohweder. Acta Agrobotanica 64: 15–24.

    Article  Google Scholar 

  • Çildir, H., A. Kahraman & M. Dogan. 2012. Petal and sepal epidermal micromorphology of six Lathyrus taxa (Fabaceae) and their systematic value. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 40: 35–41.

    Article  Google Scholar 

  • Comba, L., S. A. Corbet, H. Hunt, S. Outram, J. S. Parker & B. J. Glover. 2000. The role of genes influencing the corolla in pollination of Antirrhinum majus. Plant, Cell & Environment 23: 639–647.

    Article  CAS  Google Scholar 

  • Costa, V. B. S., R. M. M. Pimentel, M. G. S. Chagas, G. D. Alves & C. C. Castro. 2017. Petal micromorphology and its relationship to pollination. Plant Biology 19: 115–122.

    Article  CAS  PubMed  Google Scholar 

  • Darriba, D., G. L. Taboada, R. Doallo & D. Posada. 2012. Jmodeltest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Candolle, A. P. 1825. Rosaceae. Pp. 525–639. In: A. P. De Candolle (ed.), Prodromus Systematais Naturalis Regni Vegetabilis, vol. 2. Treuttel & Würtz, Paris.

    Google Scholar 

  • Drábková, L. Z., M. Pospíšková & R. Businský. 2017. Phylogeny and infrageneric delimitation in Spiraea (Rosaceae) inferred from AFLP markers and a comparison with morphology. Botanical Journal of the Linnean Society 185: 525–541.

    Article  Google Scholar 

  • Evans, R. 1999 onward. Rosaceae phylogeny: origin of subfamily Maloideae Micromorphology - petal epidermal cell morphology. University of Toronto, Toronto. Available from: http://labs.eeb.utoronto.ca/dickinson/rosaceaeevolution/micromorph (Accessed 21 February 2019).

  • Glover, B. J. & C. Martin. 1998. The role of petal cell shape and pigmentation in pollination success in Antirrhinum majus. Heredity 80: 778–784.

    Article  Google Scholar 

  • Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

    CAS  Google Scholar 

  • Hansen, H. V. 1991. Phylogenetic studies in Compositae tribe Mutisieae. Opera Botanica 109: 1–50.

    Google Scholar 

  • Henrickson, J. 1985. Xerospiraea, a generic segregate of Spiraea (Rosaceae) from Mexico. Aliso 11: 199–211.

    Article  Google Scholar 

  • Hong, S. P., L. P. R. Decraene & E. Smets. 1998. Systematic significance of tepal surface morphology in tribes Persicarieae and Polygoneae (Polygonaceae). Botanical Journal of the Linnean Society 127: 91–116.

    Article  Google Scholar 

  • Hutchinson, J. 1964. The genera of flowering plants. Vol. 1. Dicotyledones. Clarendon Press, Oxford.

    Google Scholar 

  • Kalkman, C. 2004. Rosaceae. Pp. 343–386. In: K. Kubitzki (ed.), The families and genera of vascular plants. Vol. VI. Flowering Plants. Dicotyledons: Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer-Verlag, Berlin.

  • Kay, Q. O. N., H. S. Daoud & C. H. Stirton. 1981. Pigment distribution, light reflection and cell structure in petals. Botanical Journal of the Linnean Society 83: 57–83.

    Article  CAS  Google Scholar 

  • Keven, P. G. & M. A. Lane. 1985. Flower petal microtexture is a tactile cue for bees. Proceedings of the National Academy of Sciences of the United States of America 82: 4750–4752.

    Article  Google Scholar 

  • Kim, K. S. & B. Y. Sun. 2000. Micromorphology of petal epidermis of Korean umbelliferous plants. Korean Journal of Plant Taxonomy 30: 123–138.

    Article  Google Scholar 

  • Koch, K. 1854. Die strauchartigen Spiraen. Gartenflora 3: 391–414.

    Google Scholar 

  • Kong, M. J. & S. P. Hong. 2018. The taxonomic consideration of floral morphology in the Persicaria sect. Cephalophilon (Polygonaceae). Korean Journal of Plant Taxonomy 48: 185–194.

    Article  Google Scholar 

  • Lee, S. T. 2007. Pentactina. Pp. 533–535. In: Flora of Korean Editorial Committee (ed.), The genera of vascular plants of Korea. Academy Publ. Co., Seoul.

  • Lee, C. H. & S. P. Hong. 2011. Phylogenetic relationships of the rare Korean monotypic endemic genus Pentactina Nakai in the tribe Spiraeeae (Rosaceae) based on molecular data. Plant Systematics and Evolution 294: 159–166.

    Article  Google Scholar 

  • Luneva, N. N. 1995. Variations of petal morphological characters and diversity of forms in the genus Prunus L. (Rosaceae). Botanicheskii Zhurnal 80: 79–84.

    Google Scholar 

  • Maddison, W. P. & D. R. Maddison. 2018. Mesquite: a modular system for evolutionary analysis. Version 3.51. Available from: http://www.mesquiteproject.org

  • Millner, H. J. & T. C. Baldwin. 2016. Floral micromorphology of the genus Restrepia (Orchidaceae) and the potential consequences for pollination. Flora 225: 10–19.

    Article  Google Scholar 

  • Moon, H. K. & S. P. Hong. 2004. The taxonomic consideration of petal and sepal micromorphology in Lycopus L. (Mentheae-Lamiaceae). Korean Journal of Plant Taxonomy 34: 273–285.

    Article  Google Scholar 

  • Nakai, T. 1915. Flora Sylvatica Koreana. vol 2. Forestal Experiment Station, Seoul.

    Google Scholar 

  • Nakai, T. 1917. Pentactina rupicola. Notulae ad Plantas Japoniae et Coreae. XIII. The Botanical magazine, Tokyo 31: 17.

  • Ojeda, I., J. Francisco-Ortega & Q. C. Cronk. 2009. Evolution of petal epidermal micromorphology in Leguminosae and its use as a marker of petal identity. Annals of Botany 104: 1099–1110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ojeda, D. I., A. Valido, A. G. Fernández de Castro, A. Ortega-Olivencia, J. Fuertes-Aguilar, J. A. Carvalho & A. Santos-Guerra. 2016. Pollinator shifts drive petal epidermal evolution on the Macaronesian Islands bird-flowered species. Biology Letters 12: 20160022.

    Article  PubMed  PubMed Central  Google Scholar 

  • Omer, S. A., M. T. M. Rajput & S. S. Tahir. 2017. Micromorphological studies on petals of Spiraea L. species (Rosaceae) from Pakistan. Pakistan Journal of Botany 49: 283–287.

    Google Scholar 

  • Piwowarczyk, R. & J. Kasińska. 2017. Petal epidermal micromorphology in holoparasitic Orobanchaceae and its significance for systematics and pollination ecology. Australian Systematic Botany 30: 48–63.

    Article  Google Scholar 

  • Potter, D., F. Gao, P. E. Bortiri, S. Oh & S. Baggett. 2002. Phylogenetic relationships in Rosaceae inferred from chloroplast matK and trnL–trnF nucleotide sequence data. Plant Systematics and Evolution 231: 77–89.

    Article  CAS  Google Scholar 

  • Potter, D., T. Eriksson, R. C. Evans, S. Oh, J. E. E. Smedmark, D. R. Morgan, M. Kerr, K. R. Robertson, M. P. Arsenault, T. A. Dickinson & C. S. Campbell. 2007a. Phylogeny and classification of Rosaceae. Plant Systematics and Evolution 266: 5–43.

    Article  Google Scholar 

  • Potter, D., S. M. Still, T. Grebenc, D. Ballian, G. Božič, J. Franjiæ & H. Kraigher. 2007b. Phylogenetic relationships in tribe Spiraeeae (Rosaceae) inferred from nucleotide sequence data. Plant Systematics and Evolution 266: 105–118.

    Article  CAS  Google Scholar 

  • Poyarkova, A. I. 1939. Spiraeoideae. Pp. 216–245. In: A. G. Borisova, V. L. Komarov, A. N. Krishtofovich, A. S. Lozina-Lozinskaya, V. P. Maleev, I. V. Palibin, A. Poyarkova, I. Yu, D. Tsinzerling & S. V. Yuzepchuk (eds.), Flora of the U.S.S.R. Izdatel-stvo Akademii Nauk SSSR, Moscow.

  • Ramirez, N. 1995. Revision taxonomica del genero Alexa Moq. (Fabaceae, Sophoreae). Annals of the Missouri Botanical Garden 82: 549–569.

    Article  Google Scholar 

  • Rehder, A. 1940. Manual of cultivated trees and shrubs. Dioscorides Press, Portland.

    Google Scholar 

  • Rydberg, P. A. 1900. Catalogue of the Flora of Montana and the Yellowstone National Park. Memoirs of the New York Botanical Garden 1: 1–92.

    Google Scholar 

  • Rydberg, P. A. 1908. Rosaceae. Pp. 239–292. In: N. L. Britton & L. M. Underwood (eds.), North American Flora. vol. 22. New York Botanical Garden, New York.

    Google Scholar 

  • Schulze-Menz, G. K. 1964. Rosaceae. Pp. 209–218. In: H. Melchior (ed.), Engler’s Syllabus der Pflanzenfamilien II. 12th ed. Gebrüder Borntraeger, Berlin.

    Google Scholar 

  • Sereinge, N. C. 1825. Spiraea. In: A.P. De Candolle (ed.), Prodromus systematis naturalis. Sumpt. Soc. Treuttel & Wiirtz, Paris.

    Google Scholar 

  • Sharifnia, F. & S. B. Shakib. 2012. Epidermal petal patterns of 13 Iranian Rubus L. (Rosaceae) species. Annals of Biological Research 3: 2734–2740.

    Google Scholar 

  • Song, J.-H. & S.-P. Hong. 2016. A study on the petal micromorphological characteristics of the tribe Sorbarieae (Rosaceae). Korean Journal of Plant Resources 29: 376–384.

    Article  Google Scholar 

  • Song, J.-H., M.-K. Oak, S.-H. Roh & S.-P. Hong. 2017. Morphology of pollen and orbicules in the tribe Spiraeeae (Rosaceae) and its systematic implications. Grana 56: 351–367.

    Article  Google Scholar 

  • Song, J.-H., S.-H. Roh & S.-P. Hong. (in press). Comparative seed morphology of the tribe Spiraeeae (Amygdaloideae: Rosaceae). Kew Bull.

  • Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.

    Article  CAS  Google Scholar 

  • Stirton, C. H. 1981. Petal sculpuring in papilionoid legumes. Pp. 771–788. In: R. M. Polhil & P. H. Raven (eds.), Advances in legume systematics. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Swofford, D. L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.

  • Tahir, S. S. & M. T. M. Rajput. 2010. SEM studies of petal structure of corolla of the species Sibbaldia L. (Rosaceae). Pakistan Journal of Botany 42: 1443–1449.

    Google Scholar 

  • Takhtajan, A. 1997. Diversity and classification of Flowering Plants. Columbia University Press, New York.

    Google Scholar 

  • Thiers, B. 2019 (continuously updated). Index herbariorum: a global directory of public herbaria and associated staff. New York Garden’s Virtual Herbarium. Available from: http://sweetgum.nybg.org/ih/ herbarium.php?irn=174,420 (Accessed 21 February 2019).

  • Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin & D. G. Higgins. 1997. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24: 4876–4482.

    Article  Google Scholar 

  • Wang, Q.J., X. L. Yan, L. Zhao, X. H. Zhang & Y. Ren. 2018. Comparative studies on petals structure, micromorphology and ultrastructure in two species of Stephania (Menispermaceae). Plant Systematics and Evolution 304: 911–921.

    Article  Google Scholar 

  • Whitney, H. M. & B. J. Glover. 2007. Morphology and development of floral features recognised by pollinators. Arthropod-Plant Interactions 1: 147–158.

    Article  Google Scholar 

  • Whitney, H. M., L. Chittka, T. J. Bruce & B. J. Glover. 2009. Conical epidermal cells allow bees to grip flowers and increase foraging efficiency. Current Biology 19: 948–953.

    Article  CAS  PubMed  Google Scholar 

  • Whitney, H. M., K. V. Bennett, M. Dorling, L. Sandbach, D. Prince, L. Chittka & B. J. Glover. 2011. Why do so many petals have conical epidermal cells? Annals of Botany 108: 609–616.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiang, Y., C.-H. Huang, Y. Hu, J. Wen, S. Li, T. Yi, H. Chen, J. Xiang & H. Ma. 2016. Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. Molecular Biology and Evolution 34: 262–281.

    PubMed Central  Google Scholar 

  • Yakubov, V. V. 2014. The genera Pentactina and Geum (Rosaceae) in the Russian Far East. Pp. 229–240. In: A. E. Kozhevnikov (ed.), V. L. Komarov Memorial Lectures: Issue 62. Dalnauka, Vladivostok.

  • Yu, T. T. & K. C. Kuan. 1963. Taxa Nova Rosacearum Sinicarum (I), I. Spiraea L., Systema Spiraeae Sinicae. Acta Phytotaxonomica Sinica 8: 214–217.

    Google Scholar 

  • Yu, T. T. & L. T. Lu. 1974. Spiraea L. Pp. 3–67. In: T. T. Yu (ed.), Flora Reipublicae Popularis Sinicae. vol. 36. Science Press, Beijing.

    Google Scholar 

  • Yu, S. X., S. R. Gadagkar, D. Potter, D. X. Xu, M. Zhang & Z. Y. Li. 2018. Phylogeny of Spiraea (Rosaceae) based on plastid and nuclear molecular data: Implications for morphological character evolution and systematics. Perspectives in Plant Ecology, Evolution and Systematics 34: 109–119.

    Article  Google Scholar 

  • Zhang, S.-D., J.-J. Jin, S.-Y. Chen, M. W. Chase, D. E. Soltis, H.-T. Li, J.-B. Yang, D.-Z. Li & T.-S. Yi. 2017. Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. New Phytologist 214: 1355–1367.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the directors of the herbaria E, F, KH, KHUS, and NY for permitting the examination of specimens through loans, as well as two anonymous reviewers and the associate editor, Dr. Antoine Nicolas, whose constructive comments and corrections improved the manuscript. We are also grateful to our colleagues, Drs. Moon, H.-K., Kong, M.-J., and Oak, M.-K. for their assistance in general and to Drs. Yang, S. and Park, I. for assisting with the molecular analysis. This study is supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Sciences, and Technology (grant number NRF-2018R1D1A1A09083715) to S.-P. Hong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk-Pyo Hong.

Appendix

Appendix

Appendix 1 Voucher specimens of tribe Spiraeeae examined in the present study.
Appendix 2 Taxa, GenBank accession numbers, and vouchers for the sequences used in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, JH., Roh, HS. & Hong, SP. Petal micromorphology and its systematic implications in Rosaceae tribe Spiraeeae. Brittonia 72, 111–122 (2020). https://doi.org/10.1007/s12228-020-09609-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12228-020-09609-w

Keywords

Navigation