Advertisement

Brittonia

, Volume 70, Issue 1, pp 1–14 | Cite as

Twenty-seven modes of reproduction in the obligate lichen symbiosis

  • Erin A. Tripp
  • James C. Lendemer
Article
  • 185 Downloads

Abstract

Fungi exhibit some of the greatest reproductive diversity across Eukaryotes. In addition to sexual and asexual reproduction, fungi engage in parasexual (mitotic recombinatorial) processes to acquire new genetic variation. Reproduction has been studied extensively in numerous free-living fungi but comparatively less knowledge exists for lichenized fungi, which are assumed to reproduce only through sexual spores, asexual conidia, and specialized asexual lichen propagules. We present a new conceptual framework describing reproductive modes in lichens that includes sexual and asexual processes as well as accommodating the possibility of parasexual reproduction. To support the plausibility of some of these modes of reproduction, we reviewed data spanning more than 200 years of anatomical investigation. We recovered evidence supporting the possibility of 22 of 27 possible modes of reproduction and found no counter-evidence to suggest the remaining five do not occur in nature. This conceptual framework allows for a greater plurality of reproductive processes than previously acknowledged in lichens, exceeding that of their non-lichenized relatives.

Keywords

Genetic haploid meiosis mitosis parasexual ploidy recombination symbiosis 

Notes

Acknowledgements

We thank Rosmarie Honegger, William Sanders, and their colleagues whose developmental studies in lichenology have helped to inspire the present contribution. We are especially grateful to William Sanders whose comments substantially improved an earlier version of this manuscript. We additionally thank Robbin Moran for his time and editorial contributions. Funding for this work was provided by the U.S. National Science Foundation, Dimensions of Biodiversity Award #s 1542629 (University of Colorado) and #1542639 (New York Botanical Garden).

Supplementary material

12228_2017_9500_MOESM1_ESM.xlsx (20 kb)
Suppl. Material 1. Previously published evidence for the existence of the lichen reproductive modes delimited in the current study. (XLSX 20 kb)

Literature cited

  1. Ahmadjian, V., L. A. Russell & K. C. Hildreth. 1980. Artificial reestablishment of lichens. I. Morphological interactions between the phycobionts of different lichens and the mycobionts of Cladonia cristatella and Lecanora chrysoleuca. Mycologia 72: 73–89.Google Scholar
  2. Altman, P. L. & D. S. Dittmer. 1972. Biology Data Book, 2nd ed. Vol. 1. Federation of American Societies for Experimental Biology, Bethesda.Google Scholar
  3. Amundsen, T. 2000. Why are female birds ornamented? Trends in Ecology and Evolution 4: 149–155.Google Scholar
  4. Armaleo, D. 1991. Experimental microbiology of lichens: mycelia fragmentation, a novel growth chamber, and the origins of thallus differentiation. Symbiosis 11: 163–177.Google Scholar
  5. Armstrong, R. A. 1984. Dispersal of soredia from individual soralia of the lichen Hypogymnia physodes (L.) Nyl. in a simple wind tunnel. Environmental and Experimental Botany 34: 39–45.Google Scholar
  6. Anstett, D. N., A. Salcedo & E. W. Larsen. 2014. Growing foliose lichens on cover slips: A method for asexual propagation and observing development. Bryologist 117: 179–186.Google Scholar
  7. Bachman, F. M. 1913. The origin and development of the apothecium in Collema puplosum (Bernh.) Ach. Wilhelm Engelmann, Leipzig.Google Scholar
  8. Beadle, G. W. & V. L. Coonradt. 1944. Heterocaryosis in Neurospora crassa. Genetics 29: 291–308.Google Scholar
  9. Barrett, S. C. H. 2008. Major evolutionary transitions in flowering plant reproduction: an overview. International Journal of Plant Science 169: 1–5.Google Scholar
  10. Barton, N. H. & B. Charlesworth. 1998. Why sex and recombination? Science 281: 1986–1990.Google Scholar
  11. Baur, E. 1898. Zur Frage nach der Sexualitat der Collemaceen. Berlin Deutsche Botanische Gesellschaft 16: 363–367.Google Scholar
  12. Billiard, S., M. López-Villavicencio, M. E. Hood & T. Giraud. 2012. Sex, outcrossing and mating types: Unsolved questions in fungi and beyond. Journal of Evolutionary Biology 25: 1020–1038.Google Scholar
  13. Bitter, G. 1901. Ueber die Variabilität einiger Laubflechten und über den Einfluß äusserer Bedingungen auf ihr Wachstum. Jahrbuch für wissenschaftliche Botanik 36: 421–492.Google Scholar
  14. Brodo, I. M, S. D. Sharnoff & S. Sharnoff. 2001. Lichens of North America. Yale University Press, New Haven.Google Scholar
  15. Buldakov, M. S. 2010. Intraspecific variation in the viability of soredia in Hypogymnia physodes (L.) Nyl. (Ascomycota: Lecanorales). Russian Journal of Ecology 41: 211–217.Google Scholar
  16. Buxton, E. W. 1960. Heterokaryosis, saltation and adaptation. Pp. 359–405. In: J. G. Horsfall & A. E. Dimond (eds.). Plant pathology, an advanced treatise, vol. 2. Academic Press, London and New York.Google Scholar
  17. Carranza, J. & V. Polo. 2015. Sexual recombination with variable mating systems can resist asexuality in a rock-paper-scissors dynamic. Royal Society Open Science 2: 1403893.Google Scholar
  18. Caten, C.E. & J. L. Jinks. 1966. Heterokaryosis: its significance in wild homothallic ascomycetes and fungi imperfecti. Transactions of the British Mycological Society 49: 81–93.Google Scholar
  19. Chien, T., T. L. Tseng, J. Y. Wang, Y. T. Shen, T. H. Lin & J. C. Shieh. 2015. Candida albicans DBF4 gene inducibly duplicated by the mini-Ura-blaster is involved in hypha-suppression. Mutation Research 779: 78–85.Google Scholar
  20. Clayden, S. R. 1997. Intraspecific interactions and parasitism in an association of Rhizocarpon lecanorinum and R. geograpicum. Lichenologist 29: 533–545.Google Scholar
  21. Clutterbuck, A. J. 1996. Parasexual recombination in fungi. Journal of Genetics 75: 281–286.Google Scholar
  22. Cornejo, C., S. Chabanenko & C. Scheidegger. 2009. Phylogenetic analysis indicates transitions from vegetative to sexual reproduction in the Lobaria retigera group (Lecanoromycetes, Ascomycota). Lichenologist 41: 275–284.Google Scholar
  23. Crawford, M. S., F. G. Chumley, C. G. Weaver & B. Valent. 1986. Characterization of the heterokaryotic and vegetative diploid phases of Magnaporthe grisea. Genetics 114: 1111–1129.Google Scholar
  24. Crittenden, P. D., J. C. David, D. L. Hawksworth & F. S. Campbell. 1995. Attempted isolation and success in the culturing of a broad spectrum of lichen-forming and lichenicolous fungi. New Phytologist 130: 267–297.Google Scholar
  25. Darwin, F. & A. C. Seward. 1903. More letters of Charles Darwin. John Murray, London.Google Scholar
  26. Denison, W. C. 2003. Apothecia and ascospores of Lobaria oregana and Lobaria pulmonaria investigated. Mycologia 95: 513–518.Google Scholar
  27. Fautin, D. G. 2002. Reproduction of Cnidaria. Canadian Journal of Zoology. 80: 1735–1754.Google Scholar
  28. Fisher, R. A. 1941. Average excess and average effect of a gene substitution. Annals of Eugenics 11: 53–63.Google Scholar
  29. Fontaneto, D., E. A. Herniou, C. Boschetti, M. Caprioli & G. Melone. 2007. Independently evolving species in asexual Bdelloid rotifers. PLoS Biology 5.4: e87.Google Scholar
  30. Frohlich, M. W. 2003. Opinion: An evolutionary scenario for the origin of flowers. Nature Reviews Genetics 4.7: 559–566.Google Scholar
  31. Fünstück, M. 1926. Lichenes (Flechten). Pp. 1–60. In: A. Engler & K. Prantl (eds.). Die Natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten, insbesondere den Nutzpflanzen. Wilhelm Engelmann, Leipzig.Google Scholar
  32. Garrett, R. M. 1968. Observations on the germination of lichen ascospores. Revue Bryologique et Lichenologique. 36: 330–332.Google Scholar
  33. Garty, J. & J. Delarea. 1987. Some initial stages in the formation of epilithic crustose lichens in nature: a SEM study. Symbiosis 3: 49–56.Google Scholar
  34. Geiser, D. M., J. I. Pitt & J. W. Taylor. 1998. Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proceedings of the National Academy of Sciences of the U.S.A. 95: 388–393.Google Scholar
  35. Grant, V. 1949. Pollination systems as isolating mechanisms in flowering plants. Evolution 3: 82–97.Google Scholar
  36. Gueidan, C., C. Roux & F. Lutzoni. 2007. Using a multigene phylogenetic analysis to assess generic delineation and character evolution in Verrucariaceae (Verrucariales, Ascomycota). Mycological Research 111: 1145–1168.Google Scholar
  37. Hale, M. E. Jr. 1983. The biology of lichens. Edward Arnold, London.Google Scholar
  38. Hansen, H. N. 1938. The dual phenomenon in imperfect fungi. Mycologia 30: 442–455.Google Scholar
  39. Hawksworth, D. L. & A. O. Chater. 1979. Dynamism and equilibrium in a saxicolous lichen mosaic. Lichenologist 11: 75–80.Google Scholar
  40. Hedlund, T. 1895. Ueber Thallusbildung durch Pyknokonidien bei Catillaria denigrata (Fr.) und C. prasina (Fr.). Botanisches Centralblatt 63: 9–16.Google Scholar
  41. Heller, J., J. Zhao, G. Rosenfield, D. J. Kowbel, P. Gladieux & N. L. Glass. 2016. Characterization of Greenbeard Genes involved in long-distance kind discrimination in a microbial eukaryote. PLoS Biology 14: e1002431.Google Scholar
  42. Hilmo, O., L. Rocha, H. Holien & Y. Gauslaa. 2011. Establishment success of lichen diaspores in young and old boreal rainforests: a comparison between Lobaria pulmonaria and L. scrobiculata. Lichenologist 43: 241–255.Google Scholar
  43. Hodkinson, B. P. & J. C. Lendemer. 2012. Phylogeny and taxonomy of an enigmatic sterile lichen. Systematic Botany 37: 835–844.Google Scholar
  44. Honegger, R. 1984. Scanning electron microscopy of the contact site of conidia and trichogynes in Cladonia furcata. Lichenologist 16: 11–19.Google Scholar
  45. ———. 1987. Isidium formation and the development of juvenile thalli in Parmelia pastillifera (Lecanorales, lichenized ascomycetes). Botanica Helvetica 97: 147–152.Google Scholar
  46. ———. 1993. Tansley Review No. 60. Developmental biology of lichens. New Phytologist 125. 659–677.Google Scholar
  47. ———. 1997. Metabolic interactions at the mycobiont-photobiont interface in lichens. Pages 209–221. In: G. C. Carroll & P. Tudzynski (eds.). The Mycota V. Plant Relationships. Spring, Berlin.Google Scholar
  48. ——— & ———. 2007. Mating systems in representatives of Parmeliaceae, Ramalinaceae and Physciaceae (Lecanoromycetes, lichen-forming ascomycetes). Mycological Research 111: 424–432.Google Scholar
  49. Jahns, H. M. 1972. Individualitat und Variabilitat in der Flechtengattung Cladina Nyl. Herzogia 2: 277–290.Google Scholar
  50. ———. 1979. De Neubesiedling von Baumrinde durch Flechten II. – Natur und Museum 109: 88–94.Google Scholar
  51. ———. 1987. New trends in developmental morphology of the thallus. Bibliotheca Lichenologica 25: 17–33.Google Scholar
  52. ———, D. Mollenhauer, M. Jenniger & D. Schonborn. 1979. Die Neubesiedlung von Baumrinde durch Flechten I. Natur und Museum 109: 40–51.Google Scholar
  53. Jaklitsch, W., H. O. Baral, R. Lücking, H. T. Lumbsch & W. Frey. 2016. Syllabus of plant families – A. Engler's Syllabus der Pflanzenfamilia Part 1/2: Ascomycota. W. Frey (ed.). Borntraeger, Stuttgart, Germany.Google Scholar
  54. Jennings, D. H. & A. D. M. Rayner. 1986. The ecology and physiology of the fungal mycelium. Cambridge University Press, Cambridge.Google Scholar
  55. Johnson, G. T. 1954. Ascogonia and spermatia of Stereocaulon. Mycologia 46: 337–345.Google Scholar
  56. Kershaw, K. A. & J. W. Millbank. 1970. Isidia as vegetative propagules in Peltigera aphthosa var. variolosa (Massal.) Thoms. Lichenologist 4: 214–217.Google Scholar
  57. Kodric-Brown, A. & A. J. H. Brown. 1984. Truth in advertising: the kinds of traits favored by sexual selection. American Naturalist 124: 309–323.Google Scholar
  58. Kranner, I., R. Beckett & A. Varma. 2002. Protocols in lichenology: culturing, biochemistry, ecophysiology and use in biomonitoring. Springer-Verlag, Berlin.Google Scholar
  59. Kroken, S. & J. W. Taylor. 2001. Outcrossing and recombination in the lichenized fungus Letharia. Fungal Genetics and Biology 34: 83–92.Google Scholar
  60. Laundon, J. R. 1978. Haematomma chemotypes form fused thalli. Lichenologist 10: 221–225.Google Scholar
  61. Lendemer, J. C. 2011. A standardized morphological terminology and descriptive scheme for Lepraria (Stereocaulaceae). Lichenologist 43: 379–399.Google Scholar
  62. ——— & B. P. Hodkinson. 2013. A radical shift in the taxonomy of Lepraria s.l.: molecular and morphological studies shed new light on the evolution of asexuality and lichen growth form diversification. Mycologia 105: 994–1018.Google Scholar
  63. Letrouit-Galinou, M. A. 1973. Sexual reproduction. Pp. 59–90. In: V. Ahmadjian & M. E. Hale (eds.). The lichens. Academic Press Inc., New York.Google Scholar
  64. Lynch, M., R. Butcher, D. Buerger & W. Gabriel. 1993. The mutational meltdown in asexual populations. Journal of Heredity 84: 339–344.Google Scholar
  65. Masel, J. & D. N. Lyttle. 2011. The consequences of rare sexual reproduction by means of selfing in an otherwise clonally reproducing species. Theoretical Population Biology 80: 317–322.Google Scholar
  66. McGuire, C., J. E. Davis, M. L. Double, W. L. MacDonald, J. T. Rauscher, S. McCawley & Milgroom, M. G. 2005. Heterokaryon formation and parasexual recombination between vegetatively incompatible lineages in a population of the chestnut blight fungus, Cryphonectria parasitica. Molecular Ecology 14: 3657–3669.Google Scholar
  67. Meeßen, J. & S. Ott. 2013. Recognition mechanisms during the pre-contact state of lichens: I. Mycobiont-photobiont interactions of the mycobiont of Fulgensia bracteata. Symbiosis 59: 121–130.Google Scholar
  68. Melián, C. J., D. Alonso, S. Allesina, R. S. Condit & R. S. Etienne. 2012. Does sex speed up evolutionary rate and increase biodiversity? PLoS Computational Biology 8: e1002414.Google Scholar
  69. Mitchell, M. E. 2006. “Function is smother’d in surmise”: a survey of observations on the role of lichen conidia, 1850-2000. Huntia 12: 149–167.Google Scholar
  70. Molina, M. C., P. K. Divakar, N. Zhang, N. Gonzalez & L. Struwe. 2013. Non-developing ascospores in apothecia of asexually reproducing lichen-forming fungi. International Microbiology 16: 145–155.Google Scholar
  71. Möller, A. 1887. Über die Cultur flechtenbildender Ascomyceten ohne Algen. Unterschungen aus dem botanishen Institut der Königliche. Akademie zu Münster i.w. Germany.Google Scholar
  72. Moller, A. P. & A. Pomiankowski. 1993. Why have birds got multiple sexual ornaments? Behavioral Ecology and Sociobiology 32: 167–176.Google Scholar
  73. Moreau, F. & M. F. Moreau. 1928. Les phénomenes cytologiques de la reproduction chez les Champignons de Lichens. Botaniste 20: 1–67.Google Scholar
  74. Murtagh, G. J., P. S. Dyer & P. D. Crittenden. 2000. Sex and the single lichen. Nature 404: 564.Google Scholar
  75. Nash, T.H. 2008. Lichen biology, 2nd Edition. Cambridge University Press, Cambridge.Google Scholar
  76. Nelsen, M. P. & A. Gargas. 2008. Dissociation and horizontal transmission of codispersing lichen symbionts in the genus Lepraria (Lecanorales: Stereocaulaceae). New Phytologist 177: 264–275.Google Scholar
  77. Ostrofsky, A. & W. C. Denison. 1980. Ascospore discharge and germination in Xanthoria polycarpa. Mycologia 72: 1171–1179.Google Scholar
  78. Otálora, M. A. G., C. Salvador, I. Martínez & G. Aragón. 2013. Does the reproductive strategy affect the transmission and genetic diversity of bionts in cyanolichens? A case study using two closely related species. Microbial Ecology 65: 517–530.Google Scholar
  79. Ott, S. 1987a. Differences in the developmental rates of lichens. Annales Botanici Fennici 24: 385–393.Google Scholar
  80. ———. 1987c. The juvenile development of lichen thalli from vegetative diaspores. Symbiosis 3: 57–74.Google Scholar
  81. ——— & H. M. Jahns. 2002. Differentiation processes in lichens – in vivo cultivation and transplantation methods. Pp. 65–74. In: I. Kranner, R. P. Beckett & A. K. Varma (eds.). Protocols in lichenology. Culturing, biochemistry, ecophysiology and use in biomonitoring. Springer-Verlag, Berlin.Google Scholar
  82. Packard, G. C. & R. S. Seymour. 1997. Evolution of the amniote egg. Pp. 265–290. In: S. S. Sumida (ed.), Amniote origins: completing the transition to land. Academic Press, San Diego.Google Scholar
  83. Peacock, W. J. & R. D. Brock. 1968. Replication and recombination of genetic material. Australian Academy of Science, Canberra.Google Scholar
  84. Poelt, J. 1993. La riproduzione asessuale nei licheni. Notiziario della Società Lichenologica Italiana 6: 9–28.Google Scholar
  85. Pontecorvo, G. 1946. The parasexual cycle in fungi. Annual Review of Microbiology 10: 393–400.Google Scholar
  86. ———, J. A. Roper, L. M. Hemmons, K. D. Macdonald & A. W. J Bufton. 1953a. The genetics of Aspergillus nidulans. Advances in Genetics 5: 141–238.Google Scholar
  87. ———, ——— & E. Forbes. 1953b. Genetic recombination without sexual reproduction Aspergillus niger. Journal of General Microbiology 8: 198–210.Google Scholar
  88. Pyatt, F. B. 1973. Lichen propagules. Pp. 117–145. In: V. Ahmadjian & M. E. Hale (eds.). The Lichens. Academic Press, New York.Google Scholar
  89. Ralls, K. 1977. Sexual dimorphism in mammals: avian models and unanswered questions. American Naturalist 111: 917–938.Google Scholar
  90. Raper, J. R. 1966. Genetics of sexuality in higher fungi. The Ronald Press Company, New York.Google Scholar
  91. Read, N. D. & M. G. Roca. 2006. Vegetative hyphal fusion in filamentous fungi. Pp. 87–98. In: F. Baluska, D. Volkmann, P. W. Barlow (eds.). Cell-cell channels. Landes Bioscience, Georgetown.Google Scholar
  92. Roca, L. C. Davide, M. C. Mendes-Costa & A. Wheals. 2003. Conidial anastomosis tubes in Colletotrichum. Fungal Genetics and Biology 40: 138–145.Google Scholar
  93. ———, ———, L. M. C. Davide, R. F. Schwan & A. E. Wheals. 2004. Conidial anastornosis fusion between Colletotrichum species. Mycological Research 108: 1320–1326.Google Scholar
  94. ———, J. Arlt, C. E. Jeffree & N. D. Read. 2005. Cell biology of conidial anastomosis tubes in Neurospora crassa. Eukaryotic Cell 4: 911–919.Google Scholar
  95. Rolstad, J., S. Ekman, H. L. Andersen & E. Rolstad. 2013. Genetic variation and reproductive mode in two epiphytic lichens of conservation concern: A transatlantic study of Evernia divaricata and Usnea longissima. Botany 91(2): 69–81.Google Scholar
  96. Sanders, W. B. 2002. In situ development of the foliicolous lichen Phyllophiale (Trichotheliaceae) from propagule germination to propagule production. American Journal of Botany 89: 1741–1746.Google Scholar
  97. ———. 2005. Observing microscopic phases of lichen life cycles on transparent substrata placed in situ. Lichenologist 37(5): 373–382.Google Scholar
  98. ———. 2014. Complete life cycle of the lichen fungus Calopadia puiggarii (Pilocarpaceae, Ascomycetes) documented in situ: Propagule dispersal, establishment of symbiosis, thallus development, and formation of sexual and asexual reproductive structures. American Journal of Botany 101: 1836–1848.Google Scholar
  99. ——— & R. Lücking. 2002. Reproductive strategies, relichenization and thallus development observed in situ in leaf-dwelling lichen communities. New Phytologist 155: 425–435.Google Scholar
  100. ——— & A. de los Rios. 2015. Structure and in situ development of the microlichen Gyalectidium paolae (Gomphillaceae, Ascomycota), an overlooked colonist on palm leaves in southwest Florida. American Journal of Botany 102: 1403–1412.Google Scholar
  101. Scheidegger, C. 1995. Early development of transplanted isidioid soredia of Lobaria pulmonaria in an endangered population. Lichenologist 27: 361–374.Google Scholar
  102. Schoustra, S. E., A. J. M. Debets, M. Slakhorst & R. F. Hoekstra. 2007. Mitotic recombination accelerates adaptation in the fungus Aspergillus nidulans. PLoS Genetics 3: e68.Google Scholar
  103. Schuster, G. 1985. Die Jugendentwicklung von Flechten ein Indikator fur Klimabedingungen und Umweltbelastung. Bibliotheca Lichenologica 20: 1–206.Google Scholar
  104. Seymour, F. A., P. D. Crittenden, M. J. Dickinson, M. Paoletti, D. Montiel, L. Cho & P. S. Dyer. 2005. Breeding systems in the lichen-forming fungal genus Cladonia. Fungal Genetics and Biology 42: 554–563.Google Scholar
  105. Singh, G., F. dal Grande, S. Werth & C. Scheidegger. 2015. Long-term consequences of disturbances on reproductive strategies of the rare epiphytic lichen Lobaria pulmonaria: Clonality a gift and a curse. FEMS Microbiology Ecology 91(1):  https://doi.org/10.1093/femsec/fiu009.
  106. Stahl, E. 1877. Beitrage zur Entwicklungsgeschicte des Flechten. Felix, Leipzig.Google Scholar
  107. Stebbins, G. L. 1974. Plant species. Evolution above the species level. Harvard University Press, Cambridge.Google Scholar
  108. Stern, C. 1936. Somatic crossing over and segregation in Drosophila melanogaster. Genetics 21: 625–730.Google Scholar
  109. Stevens, R. B. 1941. Morphology and anatomy of Dermatocarpon aquaticum. American Journal Botany 28: 59–69.Google Scholar
  110. Stocker-Wörgötter, E. & R. Türk. 1988. Licht- und elektronenmikroskopische Untersuchungen von Entwicklungsstadien der Flechte Endocarpon pusillum unter Kulturbedingungen. Plant Systematics and Evolution 158: 313–328.Google Scholar
  111. ——— & ———. 1989. Artificial cultures of the cyanobacterial lichen Peltigera didactyla (Peltigeraceae) in the natural environment. Plant Systematics and Evolution 165: 39–48.Google Scholar
  112. Sturgis, W. C. 1890. On the carpologic structure and development of the Collemaceae and allied groups. Proceedings of the American Academy of Arts and Sciences 25: 15–52.Google Scholar
  113. Sugiyama, J., K. Hosaka & S. O. Suh. 2006. Early diverging Ascomycota: phylogenetic divergence and related evolutionary enigma. Mycologia 98: 996–1005.Google Scholar
  114. Sweetwood, G., R. Lücking, M. P. Nelsen & A. Aptroot. 2012. Ascospore ontogeny and discharge in megalosporous Trypetheliaceae and Graphidaceae (Ascomycota: Dothideomycetes and Lecanoromycetes) suggest phylogenetic relationships and ecological constraints. Lichenologist 44: 277–296.Google Scholar
  115. Taylor, J. W., D. J. Jacobson & M. C. Fisher. 1999. The evolution of asexual fungi: reproduction, speciation and classification. Annual Reviews of Phytopathology 37: 197–246.Google Scholar
  116. Thomson, J. W. 1991. The lichen genus Staurothele in North America. Bryologist 94: 351–367.Google Scholar
  117. Tinkle, D. W. 1969. The concept of reproductive effort and its relation to the evolution of life histories of lizards. American Naturalist 103: 501–516.Google Scholar
  118. Tripp, E. A. 2016. Is asexual reproduction an evolutionary dead-end in lichens? The Lichenologist 48: 559–580.Google Scholar
  119. ———, Y. Zhuang & J. C. Lendemer. 2017. A review of existing whole genome data suggests lichen mycelia may be haploid or diploid. The Bryologist 120: 302–310.Google Scholar
  120. Van der Niet, T., R. Peakall & S. D. Johnson. 2013. Pollinator-driven ecological speciation in plants: new evidence and future perspectives. Annals of Botany 113: 199–212.Google Scholar
  121. Vines, S. H. 1878. Recent researches into the nature of lichens. The reproduction of lichens and the sexuality of the ascomycetes. Quarterly Microscopical Journal 18: 438–445.Google Scholar
  122. Vobis, G. 1977. Studies on the germination of lichen conidia. Lichenologist 9: 131–136.Google Scholar
  123. ———. 1980. Bau und Entwicklung der Flechten-Pycnidien und ihrer Conidien. Bibliotheca Lichenologica 14: 1–141.Google Scholar
  124. Werner, R. G. 1931. Histoire de la synthèse lichénique. Mémoires de la Société des Sciences Naturelles du Maroc 27: 1–45.Google Scholar
  125. Wieczorek, A. 2009. Ultrastructural examination of the pycnidia and conidia of the genus Opegrapha (Arthoniales, Ascomycota). Acta Mycologica 44: 165–171.Google Scholar
  126. Yamazaki, T. & Y. Oshima. 1979. Direct diploidization and occurrence of polyploidy in Saccharomycodes ludwigii. Journal of General Microbiology 111: 271–281.Google Scholar
  127. Yarranton, G. A. 1975. Population growth in Cladonia stellaris (Opiz) Pouz. and Vezda. New Phytologist 75: 99–110.Google Scholar
  128. Yun, S.-H., M. L. Berbee, O. C. Yoder & B. G. Turgeon. 1999. Evolution of the fungal self-fertile reproductive life style from self-sterile ancestors. Proceedings of the National Academy of Sciences of the U.S.A. 95: 5592–5597.Google Scholar
  129. Yoshimura, I., T. Kurokawa, Y. Yamamoto & Y. Kinoshita. 1993. Development of lichen thalli in vitro. Bryologist 96: 412–421.Google Scholar
  130. Zhu, Y. O., G. J. Sherlock & D. A. Petrov. 2016. Whole genome analysis of 132 clinical Saccharomyces cerevisiae strains reveals extensive ploidy variation. G3 (Bethesda) 6: 2421–2434.Google Scholar
  131. Zoller, S., B. Frey & C. Scheidegger. 2000. Juvenile development and diaspore survival in the threatened epiphytic lichen species Sticta fuliginosa, Leptogium saturninum and Menegazzia terebrata: conclusions for in-situ conservation. Pp. 1–127. In: The Fourth IAL Symposium, Progress and Problems in Lichenology at the Turn of the Millennium. Universitat de Barcelona, Barcelona.Google Scholar

Copyright information

© The New York Botanical Garden 2017

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary Biology and Museum of Natural HistoryUniversity of ColoradoBoulderUSA
  2. 2.The New York Botanical GardenBronxUSA

Personalised recommendations