Skip to main content
Log in

Role of above- and belowground traits in the functional structure and species dominance of tropical fern communities in response to edge effects

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Recent investigations have revealed the coordination and trade-offs between above- and belowground traits in structuring functional strategies of plant communities, but none of these have addressed ferns, a diverse plant lineage in tropical forests. We investigated terrestrial ferns from the perspective of how below- and aboveground traits are coordinated with functional responses to forest edges, which represent a significant part of the world’s forest cover. Specifically, we examined differences in functional strategies between forest edges and forest interior as well as traits associated with species dominance. Fern richness and abundance were sampled in 24 edge plots and 44 interior plots within the Brazilian Atlantic Forest. We obtained data for five leaf traits and three rhizome traits. Ferns did not express any functional coordination between above- and belowground traits. At the edge, ferns did not display functional homogenization. In both the interior and at the edge, ferns exhibited multiple trait covariations across a broad spectrum of plant sizes and leaf numbers, associated with rhizome type and the presence of leaf trichomes and stolons. There were no cohesive functional groups of generalists or of exclusive species of forest edges and the forest interior. Fern species dominance was related to the species-specific number of leaves and the presence of stolons. We conclude that below- and aboveground traits did neither respond in conjunction nor as a functional response to edge effects. However, both kinds of traits affected the functional structure and species dominance of fern communities at the edge and in the interior of the forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data produced from this study are provided in this manuscript as electronic supplementary material. The datasets used or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Angert AL, Huxman TE, Chesson P, Venable DL (2009) Functional tradeoffs determine species coexistence via the storage effect. Proc Natl Acad Sci USA 106:11641–11645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aros-Mualin D, Noben S, Karger DN, Carvajal-Hernández CI, Salazar L, Hernández-Rojas A, Kluge J, Sundue MA, Lehnert M, Quandt D, Kessler M (2021) Functional diversity in ferns is driven by species richness rather than by environmental constraints. Front Plant Sci 11:615723

    Article  PubMed  PubMed Central  Google Scholar 

  • Ávila-Lovera E, Goldsmith GR, Kay KM, Funk JL, Medeiros J (2022) Above- and below-ground functional trait coordination in the Neotropical understory genus Costus. AoB Plants 14:lab073

  • Avolio ML, Carroll IT, Collins SL, Houseman GR, Hallett LM, Isbell F, Koerner SE, Komatsu KJ, Smith MD, Wilcox KR (2019) A comprehensive approach to analyzing community dynamics using rank abundance curves. Ecosphere 10:e02881

    Article  Google Scholar 

  • Biggs CR, Yeager LA, Bolser DG, Bonsell C, Dichiera AM, Hou Z, Keyser SP, Khursigara AJ, Lu K, Muth AF, Negrete Jr. B, Erisman BE (2020) Does functional redundancy affect ecological stability and resilience? A review and meta‐analysis. Ecosphere 11:e03184

    Article  Google Scholar 

  • Bittebiere AK, Benot M L, Mony C (2020) Clonality as a key but overlooked driver of biotic interactions in plants. Perspect Plant Ecol Evol Syst 43:125510

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Candeias M, Fraterrigo J (2020) Trait coordination and environmental filters shape functional trait distributions of forest understory herbs. Ecol Evol 10:14098–14112

    Article  PubMed  PubMed Central  Google Scholar 

  • Canessa R, Saldaña A, Ríos RS, Gianoli E (2018) Functional trait variation predicts distribution of alien plant species across the light gradient in a temperate rainforest. Perspect Plant Ecol Evol Syst 32:49–55

    Article  Google Scholar 

  • Carvajal-Hernández CI, Gómez-Díaz JA, Kessler M, Krömer T (2018) Influence of elevation and habitat disturbance on the functional diversity of ferns and lycophytes. Plant Ecol Divers 11:335–347

    Article  Google Scholar 

  • Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533–2547

    Article  PubMed  Google Scholar 

  • Chavent M, Kuentz-Simonet V, Labenne A, Saracco J (2014) Multivariate analysis of mixed type data: the PCAmixdata R package. arXiv:1411.4911v1

  • Chen X-S, Xie Y-H, Deng Z-M, Li F, Hou ZY (2011) A change from phalanx to guerrilla growth form is an effective strategy to acclimate to sedimentation in a wetland sedge species Carex brevicuspis (Cyperaceae). Flora 206:347–350

    Article  Google Scholar 

  • Costa LEN, Arnan X, Farias RP, Barros ICL (2019) Community responses to fine-scale environmental conditions: ferns alpha and beta diversity along Brazilian Atlantic forest remnants. Acta Oecol 101:103475

    Article  Google Scholar 

  • Costa LEN, Farias RP, Kessler, M, Barros ICL (2023) Factors driving trait-convergence linked to leaf economic spectrum in tropical ferns. Bot Lett 170:518–531

    Article  Google Scholar 

  • de la Riva EG, Prieto I, Marañón T, Pérez-Ramos IM, Olmo M, Villar R (2021) Root economics spectrum and construction costs in Mediterranean woody plants: the role of symbiotic associations and the environment. J Ecol 109:1873–1885

    Article  Google Scholar 

  • Diaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304

    Article  Google Scholar 

  • Duchoslavová J, Herben T (2020) Effect of clonal growth form on the relative performance of species in experimental communities over time. Perspect Plant Ecol Evol Syst 44:125532

    Article  Google Scholar 

  • Fagundes MV, Souza AF, Oliveira RS, Ganade G (2022) Functional traits above and below ground allow species with distinct ecological strategies to coexist in the largest seasonally dry tropical forest in the Americas. Front For Glob Change 5:930099

    Article  Google Scholar 

  • Farias RP, Costa LEN, Barros, ICL, Mehltreter K (2018) Leaf phenology of Danaea geniculata (Marattiaceae) in a Submontane Tropical Forest, Brazil. Amer Fern J 108:35–46

    Article  Google Scholar 

  • Farias RP, Costa LEN, Silva IAA, Barros ICL (2015) Phenological studies of selected leaf and plant traits of Didymochlaena truncatula (Dryopteridaceae) in a Brazilian submontane tropical rainforest. Nordic J Bot 33:249–255

    Article  Google Scholar 

  • Filgueiras BK, Peres CA, Melo FP, Leal IR, Tabarelli M (2021) Winner–loser species replacements in human-modified landscapes. Trends Ecol Evol 36:545–555

    Article  PubMed  Google Scholar 

  • Fischer R, Taubert F, Müller MS, Groeneveld J, Lehmann S, Wiegand T, Huth A (2021) Accelerated forest fragmentation leads to critical increase in tropical forest edge area. Sci Advances 7:eabg7012

  • Fox J, Weisberg S (2019) An R companion to applied regression (3rd ed.). Sage, Thousand Oaks, California. Available at https://socialsciences.mcmaster.ca/jfox/Books

  • Galindo-Leal C. Câmara IG (2003) Atlantic forest hotspots status: an overview. In Galindo-Leal C, Câmara IG (eds.) The Atlantic Forest of South America: biodiversity status, threats, and outlook. Center for Applied Biodiversity Science and Island Press, Washington DC, pp 3–11

    Google Scholar 

  • Gower JC (1971) ‘A general coefficient of similarity and some of its properties’. Biometrics 27:623–637

    Article  Google Scholar 

  • Grime JP 2006 Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. J Veg Sci 17:255–260

    Article  Google Scholar 

  • Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Madison P, Luo X, Liu Z (2021) Developmental regulation of stolon and rhizome. Curr Opin Plant Biol 59:101970

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Song YB, Yu FH (2011) Heterogeneous light supply affects growth and biomass allocation of the understory fern Diplopterygium glaucum at high patch contrast. PloS One 6:e27998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song DX, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth's ecosystems. Sci Advances 1:e1500052

    Article  Google Scholar 

  • Hettenbergerová E, Hájek M (2011) Is species richness of small spring fens influenced by the spatial mass effect? Community Ecol 12:202–209

    Article  Google Scholar 

  • Hughes AR, Byrnes JE, Kimbro DL, Stachowicz JJ (2007) Reciprocal relationships and potential feedbacks between biodiversity and disturbance. Ecol Lett 10:849–864

    Article  PubMed  Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2014) Picante: Tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    Article  Google Scholar 

  • Kessler M, Siorak Y, Wunderlich M, Wegner C (2007) Patterns of morphological leaf traits among pteridophytes along humidity and temperature gradients in the Bolivian Andes. Funct Plant Biol 34:963–971

    Article  PubMed  Google Scholar 

  • Kleiman D, Aarssen LW 2007 The leaf size/number trade-off in trees. J Ecol 95:376–382

    Article  Google Scholar 

  • Klimešová J, Doležal J, Sammul M (2011) Evolutionary and organismic constraints on the relationship between spacer length and environmental conditions in clonal plants. Oikos 120:1110–1120

    Article  Google Scholar 

  • Klimešová J, Martínková J, Pausas JG, Moraes MG, Herben T, Yu FH, Vesk JPPA, de Bello F, Janeček Š, Altman J, Appezzato-da-Glória B, Bartušková A, Crivellaro A, Doležal J, Ott JP, Paula S, Schnablová R, Schweingruber FH, Ottaviani G (2019) Handbook of standardized protocols for collecting plant modularity traits. Perspect Plant Ecol Evol Syst 40:125485

    Article  Google Scholar 

  • Kluge J, Kessler M (2007) Morphological characteristics of fern assemblages along an elevational gradient: patterns and causes. Ecotropica 13:27–44

    Google Scholar 

  • Kluge J, Kessler M (2011) Phylogenetic diversity, trait diversity and niches: species assembly of ferns along a tropical elevational gradient. J Biogeogr 38:394–405

    Article  Google Scholar 

  • Laliberté E, Legendre P, Shipley B (2014) FD: Measuring functional diversity from multiple traits, and other tools for functional ecology. R Package Version 1.0-12. Available at https://cran.r-project.org/web/packages/FD/index.html. Accessed 2 Nov 2022

  • Laurance WF, Nascimento HE, Laurance SG, Andrade A, Ewers RM, Harms KE, Luizão RC, Ribeiro JE (2007) Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLoS One 2:e1017

    Article  PubMed  PubMed Central  Google Scholar 

  • Lima RAF (2005) Canopy gap structure and regeneration in tropical rain forests. Braz J Bot 28:651–670

    Google Scholar 

  • Lins-e-Silva ACB, Ferreira PSM, Rodal MJN (2021) The north-eastern Atlantic Forest: biogeographical, historical, and current aspects in the sugarcane zone. In Marques M, Grelle C (eds) The Atlantic Forest: history, biodiversity, threats and opportunities of the megadiverse forest. Springer, Cham, pp 45–61

    Chapter  Google Scholar 

  • Lôbo D, Leao T, Melo FP, Santos AM, Tabarelli M (2011) Forest fragmentation drives Atlantic forest of northeastern Brazil to biotic homogenization. Diversity & Distrib 17:287–296

    Article  Google Scholar 

  • Lovett-Doust L (1981) Population dynamics and local specialization in a clonal perennial (Ranunculus repens): I. The dynamics of ramets in contrasting habitats. J Ecol 69:743–755

    Article  Google Scholar 

  • Marques MCM, Trindade W, Bohn A, Grelle CEV (2021) The Atlantic Forest: an introduction to the megadiverse forest of South America. In Marques M, Grelle C (eds) The Atlantic Forest: history, biodiversity, threats and opportunities of the megadiverse forest. Springer, Cham, pp 3–23

    Chapter  Google Scholar 

  • Mason NWH, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112–118

    Article  Google Scholar 

  • Mickel J, Smith AR (2004) Pteridophytes of Mexico. Memb New York Bot Gard 88:1–1070

    Google Scholar 

  • Mickel JT (2016) Anemia (Anemiaceae). Flora Neotrop 118:1–181

    Google Scholar 

  • Moran RC (2008) Diversity, biogeography, and floristics. In Ranker TA, Haufler CH (eds). Biology and evolution of ferns and lycophytes. New York, Cambridge University Press, pp 367–394

    Chapter  Google Scholar 

  • Moran RC, Prado J, Labiak PH (2009) Megalastrum (Dryopteridaceae) in Brazil, Paraguay, and Uruguay. Amer Fern J 99:1–44

    Article  Google Scholar 

  • Morreale LL, Thompson JR., Tang X, Reinmann AB, Hutyra LR (2021) Elevated growth and biomass along temperate forest edges. Nat Commun 12:7181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mudrák O, Fajmon K, Jongepierová I, Prach K (2018) Mass effects, clonality, and phenology but not seed traits predict species success in colonizing restored grasslands. Restor Ecol 263:489–496

    Article  Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62

    Article  CAS  PubMed  Google Scholar 

  • Myers N, Mittermeier R, Mittermeier C, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Paciencia M, Prado J (2004) Efeitos de borda sobre a comunidade de pteridófitas na Mata Atlântica da região de Una, sul da Bahia, Brasil. Braz J Bot 27:641–653

    Article  Google Scholar 

  • Paciencia M, Prado J (2005) Effects of forest fragmentation on pteridophyte diversity in a tropical rain forest in Brazil. Plant Ecol 180:87–104

    Article  Google Scholar 

  • Page CN (2002) Ecological strategies in fern evolution: a neopteridological overview. Rev Palaeobot Palynol 119:1–33

    Article  Google Scholar 

  • Page CN, Collinson ME, Konijnenburg-Van C (2014) Lygodium hians E. Fournier (Pteridophyta, Schizaeales) – an endemic unusual ground-clothing member of a modern climbing fern genus in New Caledonia. Adansonia 36:21–43

    Article  Google Scholar 

  • Patsias K, Bruelheide H (2011) Is the degree of clonality of forest herbs dependent on gap age? Using fingerprinting approaches to assess optimum successional stages for montane forest herbs. Ecol Evol 1:290–305

    Article  PubMed  PubMed Central  Google Scholar 

  • Pereira AFN, Silva IAA, Santiago ACP, Barros ICL (2014) Efeito de borda sobre a comunidade de samambaias em fragmento de floresta atlântica (Bonito, Pernambuco, Brasil). Interciência 39:281–287

    Google Scholar 

  • PPG I (2016) A community‐derived classification for extant lycophytes and ferns. J Syst Evol 54:563–603

  • Prach K, Pyšek P (1994) Clonal plants—What is their role in succession?. Folia Geobot 29:307–320

    Article  Google Scholar 

  • Prado J, Moran RC (2008) Revision of the neotropical species of Triplophyllum (Tectariaceae). Brittonia 60:103–130

    Article  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing. Available at https://www.R-project.org. Accessed 1 Nov 2022

  • Ranta P, Blom T, Niemelä J, Joensuu E, Siitonen M (1998) The fragmented Atlantic rain forest of Brazil: size, shape and distribution of forest fragments. Biodivers & Cons 7:385–403

    Article  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  • Rocha-Uriartt L, Becker DFP, Graeff V, Koch NM, Schmitt JL (2016) Functional patterns and species diversity of epiphytic vascular spore-producing plants in riparian forests with different vegetation structure from southern Brazil. Plant Ecol Evol 149:261–271

    Article  Google Scholar 

  • Saiz H, Bittebiere A-K, Benot M-L, Jung V, Mony C (2016) Understanding clonal plant competition for space over time: a fine-scale spatial approach based on experimental communities. J Veg Sci 27:759–770

    Article  Google Scholar 

  • Sfair JC, Arroyo-Rodriguez V, Santos BA, Tabarelli M (2016) Taxonomic and functional divergence of tree assemblages in a fragmented tropical forest. Ecol Appl 26:1816–1826

    Article  PubMed  Google Scholar 

  • Sharpe JM, Mehltreter K (2010) Ecological insights from fern population dynamics. In Mehltreter K, Walker L, Sharpe J (eds) Fern ecology. Cambridge University Press, Cambridge, UK, pp 61–110

  • Sharpe JM, Mehltreter K, Walker LR (2010) Ecological importance of ferns. In Mehltreter K, Walker L, Sharpe J (eds) Fern ecology. Cambridge University Press, Cambridge, UK, pp 1–21

  • Silva IAA, Pereira AFN, Barros ICL (2011) Edge effects on fern community in an Atlantic Forest remnant of Rio Formoso, PE, Brazil. Braz J Biol 71:421–430

    Article  CAS  PubMed  Google Scholar 

  • Silva IAA, Pereira AFN, Barros ICL (2014) Fragmentation and loss of habitat: consequences for the fern communities in Atlantic Forest remnants in Alagoas, northeastern Brazil. Plant Ecol Divers 7:1–9

    Article  Google Scholar 

  • Silva VL, Mehltreter K, Schmitt JL (2018a) Ferns as potential ecological indicators of edge effects in two types of Mexican forests. Ecol Indic 93:669–676

    Article  Google Scholar 

  • Silva JLA, Souza AF, Caliman A, Voigt EL, Lichston JE (2018b) Weak whole‐plant trait coordination in a seasonally dry South American stressful environment. Ecol Evol 8:4–12

  • Song Y-B, Yu F-H, Keser LH, Dawson W, Fischer M, Dong M, van Kleunen M (2013) United we stand, divided we fall: a meta-analysis of experiments on clonal integration and its relationship to invasiveness. Oecologia 171:317–327

    Article  PubMed  Google Scholar 

  • Souza KRMS, Silva IAA, Farias RP, Barros ICL (2013) Phenology of three species of Adiantum L. (Pteridaceae) in a semideciduous forest of Pernambuco State, Brazil. Neotrop Biol Conserv 8:96–102

    Google Scholar 

  • Specht RL, Specht A (1989) Canopy structure in Eucalyptus-dominated communities in Australia along climatic gradients. Acta Oecol-Oec Plant 10:191–213

    Google Scholar 

  • Swenson N (2014) Functional and phylogenetic ecology in R. Springer-Verlag, New York, 212 pp

    Book  Google Scholar 

  • Tabarelli M, Lopes AV, Peres CA (2008) Edge-effects drive tropical forest fragments towards an early-successional system. Biotropica 40:657–661

    Article  Google Scholar 

  • Tryon RM, Tryon AF (1982) Ferns and allied plants, with special reference to tropical America. Springer-Verlag, New York

    Book  Google Scholar 

  • Vasco A, Moran RC, Ambrose BA (2013) The evolution, morphology, and development of fern leaves. Front Plant Sci 4:345

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogel S (1968) ‘Sun leaves’ and ‘shade leaves’: differences in convective heat dissipation. Ecology 49:1203–1204

    Article  Google Scholar 

  • Watkins JE Jr, Holbrook NM, Zwieniecki M (2010) Hydraulic properties of fern sporophytes: consequences for ecological and evolutionary diversification. Amer J Bot 97:2007–2019

    Article  Google Scholar 

  • Watkins JE, Kawahara AY, Leicht SA, Auld JR, Bicksler AJ, Kaiser K (2006) Fern laminar scales protect against photoinhibition from excess light. Amer Fern J 96:83–92

    Article  Google Scholar 

  • Westoby M, Wright I (2006) Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21:261–268

    Article  PubMed  Google Scholar 

  • Zambrano J, Garzon-Lopez CX, Yeager L, Fortunel C, Cordeiro N J, Beckman NG (2019) The effects of habitat loss and fragmentation on plant functional traits and functional diversity: What do we know so far? Oecologia 191:505–518

    Article  PubMed  Google Scholar 

  • Zuquim G, Benchimol M, Tonon R, Peres CA, Storck-Tonon D (2022) Effects of forest degradation on Amazonian ferns in a land-bridge island system as revealed by non-specialist inventories. Ecol Solut Evid 3:e12123

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Article  Google Scholar 

Download references

Acknowledgements

We thank the two anonymous reviewers and the editor Jitka Klimešová, who offered constructive criticism on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RPF and LENC contributed to the study conception and design. Data collection was performed by MNBG, RPF and LENC. Data analyses were performed by LENC and MPPS. KM, VLS and JLS contributed to the interpretation of the results. The first draft of the manuscript was written by RPF and LENC with support from all authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rafael de Paiva Farias.

Ethics declarations

Conflict of Interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Paiva Farias, R., Mehltreter, K., Silva, M.P.P. et al. Role of above- and belowground traits in the functional structure and species dominance of tropical fern communities in response to edge effects. Folia Geobot 58, 275–291 (2024). https://doi.org/10.1007/s12224-024-09444-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-024-09444-x

Keywords

Navigation