Skip to main content

Advertisement

Log in

Disentangling spatial and island shape effects on bryophyte distribution in the Zhoushan Archipelago, China

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Understanding the effects of island shape and dispersal limitation on species assemblages is important for the conservation of bryophytes in fragmented landscapes. In order to explore the comparative contributions of dispersal limitation vs environmental filtering, island shape vs other island attributes to bryophyte species assemblages in fragmented landscapes, we investigated bryophyte flora and environmental variables (island shape, area, elevation, and isolation degree) of 71 islands in the Zhoushan Archipelago in the East China Sea. We used redundancy analysis, canonical correspondence analysis and generalized linear mixed models to explore comparative contributions of dispersal limitation vs environmental filtering, shape vs other explanatory variables to bryophyte species composition and species richness. Dispersal limitation independently accounted for 15% of the total variation in species composition, which was higher than environmental filtering (6.6%). When island shape was the only constraining explanatory variable, it explained 22.5% of the total species richness variation. Variance partitioning showed that island shape per se explained 3.8% of the total variation in species richness and 18.7% of the variation was confounded by island shape and other variables. Island shape combined with area and elevation was a good predictor of bryophyte species richness, independently explaining 40% of the total SR variation. Among twenty tested bryophyte categories, eighteen categories had positive relationships of their species richness with island shape irregularity, their species richness linearly increasing with island shape irregularity to varying extents. Island shape irregularity exerted a stronger effect on the species richness of acrocarpous mosses than that of pleurocarpous mosses. Therefore, dispersal limitation exerted significant effects on bryophyte species assemblages, and island shape imposed a significant and taxon-specific effect on bryophyte species richness. Our findings implied that a forest reserve with a high irregular shape is favourable for bryophyte conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Alharbis WG, Petrovskii SV (2016) The impact of fragmented habitat’s size and shape on populations with Allee effect. Math Modelling Nat Phenomena 11:5–15

    Article  Google Scholar 

  • Aranda SC, Gabriel R, Borges PAV, Santos AMC, Azevedo EB, Patiño J, Hortal J, Lobo JM (2014) Geographical, temporal and environmental determinants of bryophyte species richness in the Macaronesian Islands. PLoS ONE 9:e101786

    Article  PubMed  CAS  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Statist Softw 67:1–48

    Article  Google Scholar 

  • Blouin MS, Connor EF (1985) Is there a best shape for nature reserves? Biol Conservation 32:277–288

    Article  Google Scholar 

  • Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology 85:1826–1832

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapena P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press

    Book  Google Scholar 

  • Chen SB, Ferry Slik JW, Mao LF, Zhang J, Sa R, Zhou KX, Gao JX (2015) Spatial patterns and environmental correlates of bryophyte richness: sampling effort matters. Biodivers & Conservation 24:593–607

    Article  Google Scholar 

  • During HJ, van Tooren BF (1987) Recent developments in bryophyte population ecology. Trends Ecol Evol 2:89–93

    Article  CAS  PubMed  Google Scholar 

  • Fattorini S (2008) How island geography and shape may influence species rarity and biodiversity loss in a relict fauna: a case study of Mediterranean beetles. Open Conservation Biol J 2:11–20

    Article  Google Scholar 

  • Fergus AJF, Gerighausen U, Roscher C (2017) Vascular plant diversity structures bryophyte colonization in experimental grassland. J Veget Sci 28:903–914

    Article  Google Scholar 

  • Fraaije RGA, ter Braak CJF, Verduyn B, Verhoeven JTA, Soons MB (2015) Dispersal versus environmental filtering in a dynamic system: drivers of vegetation patterns and diversity along stream riparian gradients. J Ecol 103:1634–1646

    Article  Google Scholar 

  • Frahm JP (2008) Diversity, dispersal and biogeography of bryophytes (mosses). Biodivers & Conservation 17:277–284

    Article  Google Scholar 

  • Freestone AL, Inouye BD (2006) Dispersal limitation and environmental heterogeneity shape scale-dependent diversity patterns in plant communities. Ecology 87:2425–2432

    Article  PubMed  Google Scholar 

  • Game M (1980) Best shape for nature reserves. Nature 287:630–632

    Article  Google Scholar 

  • Gan HJ, Zak DR, Hunter MD (2019) Scale dependency of dispersal limitation, environmental filtering and biotic interactions determine the diversity and composition of oribatid mite communities. Pedobiologia 74:43–53

    Article  Google Scholar 

  • Gao YC, Yang Q, Li HJ, Wang XH, Zhan AB (2019) Anthropogenic pollutant-driven geographical distribution of mesozooplankton communities in estuarine areas of the Bohai Sea, China. Sci Rep 2019:9.9668

    Article  CAS  Google Scholar 

  • Gimingham CH, Birse EM (1957) Ecological studies on growth-form in bryophytes: I. Correlations between growth-form and habitat. J Ecol 45:533–545

    Article  Google Scholar 

  • Guang H, Wu JG, Feeley KJ, Xu GF, Yu MJ (2012) The effects of landscape variables on the species-area relationship during late-stage habitat fragmentation. PLOS One 7:e43894

    Article  CAS  Google Scholar 

  • Haila Y (1999) Islands and fragments. In Hunter ML (ed.) Maintaining biodiversity in forest ecosystems. Cambridge University Press, Cambridge, pp 234–264

    Chapter  Google Scholar 

  • Heatwole H (1991) Factors affecting the number of species of plants on islands of the Great Barrier Reef, Australia. J Biogeogr 18:213–221

    Article  Google Scholar 

  • Hedenas H, Bolyukh VO, Jonsson BC (2003) Spatial distribution of epiphytes on Populus tremula in relation to dispersal mode. J Veg Sci 14:233–242

    Article  Google Scholar 

  • Helzer CJ, Jelinski DE (1999) The relative importance of patch area and perimeter-area ratio to grassland breeding birds. Ecol Applic 9:1448–1458

    Google Scholar 

  • Hill JL, Curran PJ (2003) Area, shape and isolation of tropical forest fragments: effects on tree species diversity and implications for conservation. J Biogeogr 30:1391–1430

    Article  Google Scholar 

  • Honnay O, Piessens K, Van Landuyt W, Hermy M, Gulinck H (2003) Satellite based land use and landscape complexity indices as predictors for regional plant species diversity. Landscape Urban Planning 63:241–250

    Article  Google Scholar 

  • Hu G, Feeley KJ, Yu M (2016) Habitat fragmentation drives plant community assembly processes across life stages. PLOS One 11:e0159572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography (MPB-32). Princeton University Press, Princeton. 374 pp

    Google Scholar 

  • Hutsemékers V, Hardy OJ, Mardulyn P, Shaw AJ, Vanderpoorten A (2010) Macroecological patterns of genetic structure and diversity in the aquatic moss Platyhypnidium riparioides. New Phytol 185:852–864

    Article  PubMed  Google Scholar 

  • Hutsemékers V, Szövényi P, Shaw AJ, González-Mancebo JM, Muñoz J, Vanderpoorten A (2011) Oceanic islands are not sinks of biodiversity in spore-producing plants. PNAS 108:18989–18994

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang TT, Yang XC, Zhong YL, Tang QM, Liu Y, Su ZY (2018) Species composition and diversity of ground bryophytes across a forest edge-to-interior gradient. Sci Rep 8:1–10

    Google Scholar 

  • Kalmar A, Currie DJ (2006) A global model of island biogeography. Global Ecol Biogeogr 15:72–81

    Article  Google Scholar 

  • Kivlin SN, Winston GC, Goulden ML, Treseder KK (2014) Environmental filtering affects soil fungal community compostion more than dispersal limitation at regional scales. Fungal Ecol 12:14–25

    Article  Google Scholar 

  • Korpelainen H, von Crautlein M, Laaka-Lindberg S, Huttunen S (2011) Fine-scale spatial genetic structure of a liverwort (Barbilophozia attenuata) within a network of ant trails. Evol Ecol 25:45–57

    Article  Google Scholar 

  • Kraft NJB, Comita LS, Chase JM, Sanders NJ, Swenson NG, Crist TO, Stegen JC, Vellend M, Boyle B, Anderson MJ, Cornell HV, Davies KF, Freestone AL, Inouye BD, Harrison SP, Myers JA (2011) Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333:1755–1758

    Article  CAS  PubMed  Google Scholar 

  • Kuussaari K, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärtel M, Pino J, Rodà F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571

    Article  PubMed  Google Scholar 

  • Laland K, Matthews B, Feldman M W (2016) An introduction to niche construction theory. Evol Ecol 30:191–202

    Article  PubMed  PubMed Central  Google Scholar 

  • Laurance WF (1991) Edge effects in tropical forest fragments: application of a model for the design of nature reserves. Biol Conservation 57:205–219

    Article  Google Scholar 

  • Laurance WF (2000) Do edge effects occur over large spatial scales? Trends Ecol Evol 15:134–135

    Article  CAS  PubMed  Google Scholar 

  • Legendre P, Mi X, Ren H, Ma K, Yu M, Sun IF, He F (2009) Partitioning beta diversity in a subtropical broad- leaved forest of China. Ecology 90:663–674

    Article  PubMed  Google Scholar 

  • Legendre P., Legendre L (2012) Numerical ecology. Third English Edn. Elsevier, Amsterdam

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Liu JL, Zheng SL, Tiwari RM, Liu LB, Han WJ, Liu JJ (2020) Similar mechanisms underlie beta diversity of bryophytes in two archipelagos with different isolation time. Ecosphere 11:e03296

    Google Scholar 

  • Löbel S, Dengler J, Hobohm C (2006) Species richness of vascular plants, bryophytes and lichens in dry grasslands: the effects of environment, landscape structure and competition. Folia Geobot 41:377–393

    Article  Google Scholar 

  • Lomolino MV, Weiser MD (2001) Towards a more general species-area relationship: diversity on all islands, great and small. J Biogeogr 28:431–445

    Article  Google Scholar 

  • Longton R (1997) Reproductive biology and life history strategies. Advances Bryol 6:65–101

    Google Scholar 

  • Lönnell N, Hylander K, Jonsson BG, Sundberg S (2012) The fate of the missing spores – patterns of realized dispersal beyond the closest vicinity of a sporulating moss. PLoS ONE 7:e41987

    Article  PubMed  CAS  Google Scholar 

  • May RM, Stumpf MPH (2000) Species-area relations in tropical forests. Science 290:2084–2086

    Article  CAS  PubMed  Google Scholar 

  • McDaniel SF, Shaw AJ (2005) Selective sweeps and intercontinental migration in the cosmopolitan moss Ceratodon purpureus (Hedw.) Brid. Molec Ecol 14:1121–1132

    Article  CAS  Google Scholar 

  • Medina NG, Draper I, Lara F (2011) Biogeography of mosses and allies: Does size matter? In Fontaneto D (ed.) Biogeography of microscopic organisms: Is everything small everywhere? Cambridge University Press, Cambridge, pp 209–233

    Chapter  Google Scholar 

  • Miles CJ, Longton RE (1992) Deposition of moss spores in relation to distance from parent gametophytes. J Bryol 17:355–368

    Article  Google Scholar 

  • Missouri Botanical Garden (2021) Tropicos® [DB/OL]. Available at http://www.tropicos.org. Accessed 6 Dec 2021

  • Moen J, Jonsson BG (2003) Edge effects on liverworts and lichens in forest patches in a mosaic of boreal forest and wetland. Conservation Biol 17:380–388

    Article  Google Scholar 

  • Mori AS, Isbell F, Seidl R (2018) β-diversity, community assembly, and ecosystem functioning. Trends Ecol Evol 33:549–564

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrison LW (2002) Determinants of plant species richness on small Bahamian islands. J Biogeogr 29:931–941

    Article  Google Scholar 

  • Moser D, Zechmeister HG, Plutzar C, Sauberer N, Wrobka T, Grabherr G (2002) Landscapes patch shape complexity as an effective measure for plant species richness in rural landscapes. Landscape Ecol 17:657–669

    Article  Google Scholar 

  • Muñoz J, Felicísimo AM, Cabezas F, Burgaz AR, Martinez I (2004) Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science 304:1144

    Article  PubMed  CAS  Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests – implications for conservation. Trends Ecol Evol 10:58–62

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Meth Ecol Evol 4:133–142

    Article  Google Scholar 

  • Nemésio A, Silveira FA (2010) Forest fragments with larger core areas better sustain diverse orchid bee faunas (Hymenoptera: Apideae: Euglossima). Neotrop Entomol 39:555–561

    Article  PubMed  Google Scholar 

  • Oldén A, Halme P (2016) Microhabitat determines how grazing affects bryophytes in wood-pastures. Biodivers & Conservation 35:1151–1165

    Article  Google Scholar 

  • Oliveira SM, ter Steege H, Cornelissen JHC, Gradstein SR (2009) Niche assembly of epiphytic bryophyte communities in the Guianas: a regional approach. J Biogeog 36:2076–2084

    Article  Google Scholar 

  • Patiño J, Bisang L, Hedenäs L, Dirkse G, Bjarnason ÁH, Ah-Peng C, Vanderpoorten A (2013) Baker's law and the island syndromes in bryophytes. J Ecol 101:1245–1255

    Article  Google Scholar 

  • Patiño J, Weigelt P, Guilhaumon F, Kreft H, Triantis KA, Naranjo-Cigala A, Sólymos P, Vanderpoorten A (2014) Differences in species–area relationships among the major lineages of land plants: a macroecological perspective. Global Ecol Biogeogr 23:1275–1283

    Article  Google Scholar 

  • Patton DR (1975) A diversity index for quantifying habitat edge. Wildlife Soc Bull 3:171–173

    Google Scholar 

  • Pharo EJ, Lindenmayer DB, Taws N (2004) The effects of large-scale fragmentation on bryophytes in temperate forests. J Appl Ecol 41:910–921

    Article  Google Scholar 

  • Pharo EJ, Zartman CE (2007) Bryophytes in a changing landscape: the hierarchical effects of habitat fragmentation on ecological and evolutionary processes. Biol Conservation 135:315–325

    Article  Google Scholar 

  • Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:1246752

    Article  CAS  PubMed  Google Scholar 

  • Pimm SL, Raven P (2000) Biodiversity: extinction by numbers. Nature 403:843–845

    Article  CAS  PubMed  Google Scholar 

  • Porley R, Hodgetts N (2005) Mosses and liverworts. Harper Collins, London Press, Cambridge, pp 209–233

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • R Development Core Team (2020) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conservation Biol 5:18–32

    Article  Google Scholar 

  • Saura S, Carballal P (2004) Discrimination of native and exotic forest patterns through shape irregularity indices: an analysis in the landscapes of Galicia, Spain. Landscape Ecol 19:647–662

    Article  Google Scholar 

  • Schindler S, Wehrden H, Poirazidis K, Wrbka T, Kati V (2013) Multiscale performance of landscape metrics as indicators of species richness of plants, insects and vertebrates. Ecol Indicators 31:41–48

    Article  Google Scholar 

  • Segre H, Ron R, De Malach N, Henkin Z, Mandel M, Kadmon R (2014) Competitive exclusion, beta diversity, and deterministic vs. stochastic drivers of community assembly. Ecol Lett 17(11):1400–8

  • Shi JX (2021) Vegetation classification and mapping of Zhoushan archipelago. East China Normal University, Shanghai, China (in Chinese)

    Google Scholar 

  • Shi W, Wang YQ, Xiang WS, Li XK, Cao KF (2020) Environmental filtering and dispersal limitation jointly shaped the taxonomic and phylogenetic beta diversity of natural forests in southern China. Ecol Evol 11:8783–8794

    Article  Google Scholar 

  • Smith AJE (1982) Bryophyte ecology. Chapman and Hall, London

    Book  Google Scholar 

  • Smith RJ, Stark LR (2014) Habitat vs. dispersal constraints on bryophyte diversity in the Mojave Desert, USA. J Arid Environm 102:76–81

    Article  Google Scholar 

  • Söderström L, Jonsson BG (1989) Spatial pattern and dispersal in the leafy hepatic Ptilidium pulcherrimum. J Bryol 15:793–802

    Article  Google Scholar 

  • Song YM (2001) Hydrological characteristics of Zhoushan islands. J China Hydrol 21:59–62

    Google Scholar 

  • ter Braak CJ, Šmilauer P (2012) Canoco reference manual and user's guide: software for ordination, version 5.0. Microcomputer Power, Ithaca

  • The Editorial Board of the Island Chronicles of China (2014a) The island chronicles of China (Vol. Zhejiang No. 1) – the northern part of Zhoushan archipelago. Ocean Press, Beijing

  • The Editorial Board of the Island Chronicles of China (2014b) The island chronicles of China (Vol. Zhejiang No. 2) – the southern part of Zhoushan archipelago. Ocean Press, Beijing

  • Triantis KA, Guihaumon F, Whittaker RJ (2012) The island species-area relationship: biology and statistics. J Biogeogr 39:215–231

    Article  Google Scholar 

  • Triantis KA, Mylonas M, Lika K, Vardinoyannis K (2003) A model for the species-area-habitat relationship. J Biogeogr 30:19–27

    Article  Google Scholar 

  • Vanderpoorten A, Devos N, Goffinet B, Hardy OJ, Shaw AJ (2008) The barriers to oceanic island radiation in bryophytes: insights from the phylogeography of the moss Grimmia montana. J Biogeogr 35:654–663

    Article  Google Scholar 

  • Vanderpoorten A, Patiño J, Désamoré A, Laenen B, Górski P, Papp B, Holá E, Korpelainen H, Hardy O (2019) To what extent are bryophytes efficient dispersers? J Ecol 107:2149–2154

    Article  Google Scholar 

  • Vellak K, Paal J, Lura J (2003) Diversity and distribution pattern of bryophytes and vascular plants in a boreal spruce forest. Silva Fenn 37:3–13

    Article  Google Scholar 

  • Virtanen R (2014) Diaspore and shoot size as drivers of local, regional and global bryophyte distributions. Global Ecol Biogeogr 23:610–619

    Article  Google Scholar 

  • Wang JT, Wang PX (1980) The relationship between sea level rising and climate change on east of China. J Chin Geogr Sci 35:299–313

    Google Scholar 

  • Wyatt R (1982) Population ecology of bryophytes. J Hattori Bot Lab 52:179–189

    Google Scholar 

  • Yamasaki K, Chiba S, Nagahama H (2000) Anisotropic shape of islands and species richness of land snail fauna of the Ryukyus. Tropics 10:93–101

    Article  Google Scholar 

  • Yu J, Shen L, Zang, Cai JR, Guo SL (2019) Geographical, anthropogenic and climatic determinants of bryophyte species composition and richness in the Shengsi archipelago, East China Sea. J Bryol 41:107–120

    Article  Google Scholar 

  • Yu MJ, Hu G, Feeley KJ, Wu JG, Ding P (2012) Richness and composition of plants and birds on land-bridge islands: effects of island attributes and differential responses of species groups. J Biogeogr 39:1124–1133

    Article  Google Scholar 

  • Yu SL (2006) On application of linear mixed models. Stat Chin Hosp 13:71–75

    Google Scholar 

  • Zhong L, Didham RK, Liu JL, Jin Y, Yu MJ (2021) Community re-asembly and divergence of woody plant traits in an island-mainland system after more than 50 years of regeneration. Divers Distrib 27:1435–1448

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Nature Science Foundation of China (32071643, 31570208) and the Nature Science Foundation of Shanghai (21ZR1447400). We thank Cheng Zang, Lichang Yan, Jinrong Cai, Qi Wang, Wei Wei, Shanghai Normal University, for their joining in the field collection. Thanks are also due to Prof. Tong Cao, Shanghai Normal University, for his identification of bryophyte specimens, two anonymous reviewers for the valuable comments and suggestions for improving the quality of the paper, and to Prof. Rod Seppelt, Bundall, Queensland, for his valuable suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in collecting specimens. DDL, FZ, GYL and HZ identified specimens. JY and SLG conceived and designed the work, identified specimens, performed the analysis and interpretation of data, and wrote the manuscript.

The authors declare that they have no conflict of interest.

Corresponding authors

Correspondence to Shuiliang Guo or Jing Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Zhang, F., Luo, G. et al. Disentangling spatial and island shape effects on bryophyte distribution in the Zhoushan Archipelago, China. Folia Geobot 57, 83–101 (2022). https://doi.org/10.1007/s12224-022-09413-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-022-09413-2

Keywords

Navigation