Advertisement

Three phylogenetically distant shade-tolerant temperate forest herbs have similar seed germination syndromes

  • Filip VandelookEmail author
  • Ann Van de Vyver
  • Angelino Carta
Article

Abstract

Plants growing in the same environment typically share ecophysiological characteristics enabling them to survive and reproduce when exposed to a common selection pressure. As such, seedlings establishing in temperate forest habitats cope with similar issues of low light availability and climate seasonality. We examined similarities in the germination syndromes in three shade-tolerant temperate forest herbs, Allium ursinum (Amaryllidaceae), Mercurialis perennis (Euphorbiaceae) and Dioscorea communis (Dioscoreaceae) with a distant phylogenetic affiliation. Seeds of M. perennis and A. ursinum are dispersed in spring and those of D. communis in autumn. Experiments on phenology of seed germination and seedling emergence in natural conditions revealed that seeds of all three species germinate in the following autumn. Seedlings do not emerge immediately but rather remain below the soil surface until late winter or early spring. Experiments in controlled laboratory conditions showed that seeds germinated best at intermediate autumn or spring temperatures (between 10 and 15°C) following a period at high summer temperatures (around 20°C). Seed germination of Allium ursinum is strongly photoinhibited, while moderate photoinhibition and no photoinhibition at all was observed in Dioscorea communis and Mercurialis perennis, respectively. Although seeds of all three species are endospermic at dispersal, no embryo growth prior to germination was observed. The cotyledons functioned as a haustorium, recuperating the nutrient reserves in the endosperm post-germination. It can be concluded that although phylogenetically unrelated, the three species studied show a remarkable similarity in germination and seedling emergence strategy that is commonly observed in plants adapted to growing in shady conditions.

Keywords

Dormancy Embryo Germination Haustorium Seeds Woodlands 

Notes

Acknowledgements

We thank Robin Probert, John Dickie and Rosemary Newton (Royal Botanic Gardens, Kew) for lengthy discussion on notions of the dormancy concept introduced in this manuscript. We thank two anonymous reviewers and the editor for useful suggestions to improve the manuscript.

References

  1. Angevine MW, Chabot BF (1979) Seed germination syndromes in higher plants. In Solbrig OT, Jain S, Johnson GB, Raven PH (eds) Topics in plant population biology. Palgrave, London, pp 188–206Google Scholar
  2. Barton LV (1933) Seedling production in tree peony. Contr Boyce Thompson Inst Pl Res 5:451–460Google Scholar
  3. Barton LV, Schroeder, EM (1942) Dormancy in seeds of Convallaria majalis L. and Smilacina racemosa. Contr Boyce Thompson Inst Pl Res 12:277–300Google Scholar
  4. Baskin JM, Baskin CC (1985) Epicotyl dormancy in seeds of Cimicifuga racemosa and Hepatica acutiloba. Bull Torrey Bot Club 112:253–257CrossRefGoogle Scholar
  5. Baskin CC, Baskin JM (1988) Germination ecophysiology of herbaceous plant species in a temperate region. Amer J Bot 75:286–305CrossRefGoogle Scholar
  6. Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res 14:1–16CrossRefGoogle Scholar
  7. Baskin CC, Baskin JM (2014) Seeds. Ecology, biogeography, and evolution. 2nd Ed. Academic Press, San DiegoGoogle Scholar
  8. Bierzychudek P (1982) Life histories and demography of shade-tolerant temperate forest herbs: a review. New Phytol 90:757–776CrossRefGoogle Scholar
  9. Burkill IH (1939) The trigger-mechanism in the germination of the seed of Tamus communis Linn. J Bot 77:44–50Google Scholar
  10. Burkill IH (1944) Biological flora of the British Isles. Tamus communis J Ecol 32:121–129CrossRefGoogle Scholar
  11. Carta A, Probert R, Moretti M, Peruzzi L, Bedini, G (2014) Seed dormancy and germination in three Crocus ser. verni species (Iridaceae): implications for evolution of dormancy within the genus. Pl Biol 16:1065–1074Google Scholar
  12. Carta A, Hanson S, Müller JV (2016) Plant regeneration from seeds responds to phylogenetic relatedness and local adaptation in Mediterranean Romulea (Iridaceae) species. Ecol Evol 6:4166–4178CrossRefGoogle Scholar
  13. Carta A, Skourti E, Mattana E, Vandelook F, Thanos CA (2017) Photoinhibition of seed germination: occurrence, ecology and phylogeny. Seed Sci Res 27:131–153CrossRefGoogle Scholar
  14. Commander LE, Merritt DJ, Rokich DP, Dixon KW (2009) The role of after-ripening in promoting germination of arid zone seeds: a study on six Australian species. Bot J Linn Soc 161:411–421CrossRefGoogle Scholar
  15. Copete E, Herranz JM, Ferrandis P, Baskin CC, Baskin JM (2011) Physiology, morphology and phenology of seed dormancy break and germination in the endemic Iberian species Narcissus hispanicus (Amaryllidaceae). Ann Bot (Oxford) 107:1003–1016CrossRefGoogle Scholar
  16. Crocker W (1916) Mechanics of dormancy in seeds. Amer J Bot 3:99–120CrossRefGoogle Scholar
  17. Ensslin A, Van de Vyver A, Vanderborght T, Godefroid S (2018). Ex situ cultivation entails high risk of seed dormancy loss on short-lived wild plant species. J Appl Ecol 55:1145–1154CrossRefGoogle Scholar
  18. Ernst WHO (1979) Population biology of Allium ursinum in northern Germany. J Ecol 67:347–362CrossRefGoogle Scholar
  19. Findeis M (1917) Über das Wachstum des Embryos im ausgesäeten Samen vor der Keimung. Sitzungsber Akad Wiss Math-Naturwiss Kl 126:77–102Google Scholar
  20. Fox JF (1982) Adaptation of gray squirrel behavior to autumn germination by white oak acorns. Evolution 36:800–809CrossRefGoogle Scholar
  21. Hermy M, Honnay O, Firbank L, Grashof-Bokdam C, Lawesson JE (1999) An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol Conservation 91:9–22CrossRefGoogle Scholar
  22. Hodgson JG, Mackey JML (1986) The ecological specialization of dicotyledonous families within a local flora: some factors constraining optimization of seed size and their possible evolutionary significance. New Phytol 104:497–515CrossRefGoogle Scholar
  23. Hoffman CA (1933) Developmental morphology of Allium cepa. Bot Gaz 95:279–299CrossRefGoogle Scholar
  24. Jankowska-Blaszczuk M, Daws MI (2007) Impact of red: far red ratios on germination of temperate forest herbs in relation to shade tolerance, seed mass and persistence in the soil. Funct Ecol 21:1055–1062CrossRefGoogle Scholar
  25. Jefferson RG (2008) Biological Flora of the British Isles: Mercurialis perennis L. J Ecol 96:386–412CrossRefGoogle Scholar
  26. Klimešová J, Martínková J, Ottaviani G (2018) Belowground plant functional ecology: towards an integrated perspective. Funct Ecol 32:2115–2126CrossRefGoogle Scholar
  27. Kondo T, Narita M, Phartyal SS, Hidayati SN, Walck JL, Baskin JM, Baskin CC (2015) Morphophysiological dormancy in seeds of Convallaria keiskei and a proposal to recognize two types of double dormancy in seed dormancy classification. Seed Sci Res 25:210–220CrossRefGoogle Scholar
  28. Krähenbühl M, Yuan YM, Küpfer P (2002). Chromosome and breeding system evolution of the genus Mercurialis (Euphorbiaceae): implications of ITS molecular phylogeny. Pl Syst Evol 234:155–169CrossRefGoogle Scholar
  29. Lakon 1911 Beiträge zur forstlichen Samenkunde. II. Zur Anatomie und Keimungsphysiologie der Eschensamen. Naturwoss Z Forst- Landw 9:285Google Scholar
  30. Lawton JRS, Lawton JR (1967) The morphology of the dormant embryo and young seedling of five species of Dioscorea from Nigeria. Proc Linn Soc London 178:153–159CrossRefGoogle Scholar
  31. Li QQ, Zhou SD, He XJ, Yu Y, Zhang YC, Wei XQ (2010) Phylogeny and biogeography of Allium (Amaryllidaceae: Allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China. Ann Bot (Oxford) 106:709–733CrossRefGoogle Scholar
  32. Magyar L, Lukács D (2002) Germination and emergence of annual mercury (Mercurialis annua L.). Z Pflanzenkrankh Pflanzenschutz 18:197–203Google Scholar
  33. Martin AC (1946) The comparative internal morphology of seeds. Amer Midl Naturalist 36:513–660CrossRefGoogle Scholar
  34. Mondoni A, Probert R, Rossi G, Hay F, Bonomi C (2008). Habitat-correlated seed germination behaviour in populations of wood anemone (Anemone nemorosa L.) from northern Italy. Seed Sci Res 18:213–222CrossRefGoogle Scholar
  35. Mukerji SK (1936) Contributions to the autecology of Mercurialis perennis L. Parts I–III. J Ecol 24:38–81CrossRefGoogle Scholar
  36. Newton RJ, Hay FR, Ellis RH (2013) Seed development and maturation in early spring-flowering Galanthus nivalis and Narcissus pseudonarcissus continues post-shedding with little evidence of maturation in planta. Ann Bot (Oxford) 111:945–955CrossRefGoogle Scholar
  37. Okagami N, Kawai M (1977) Dormancy in Dioscorea: gibberellin-induced inhibition or promotion in seed germination of D. tokoro and D. tenuipes in relation to light quality. Pl Physiol 60:360–362CrossRefGoogle Scholar
  38. Okagami N, Kawai M (1982) Dormancy in Dioscorea: differences of temperature responses in seed germination among six Japanese species. Bot Mag 95:155–166CrossRefGoogle Scholar
  39. R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from http://www.R project.org. Accessed 01 June 2018
  40. Slade EA, Causton DR (1979) The germination of some woodland herbaceous species under laboratory conditions: a multifactorial study. New Phytol 83:549–557CrossRefGoogle Scholar
  41. Terui K, Okagami N (1989) Dormancy in Dioscorea: rapid germination of detached embryos from dormant seeds of D. tokoro. Pl Cell Physiol 30:287–293CrossRefGoogle Scholar
  42. Terui K, Okagami N (1993) Temperature effects on seed germination of East Asian and Tertiary relict species of Dioscorea (Dioscoreaceae). Amer J Bot 80:493–499CrossRefGoogle Scholar
  43. Thanos CA, Georghiou K, Douma DJ, Marangaki CJ (1991) Photoinhibition of seed germination in Mediterranean maritime plants. Ann Bot (Oxford) 68:469–475CrossRefGoogle Scholar
  44. Thompson K, Hodkinson DJ (1998) Seed mass, habitat and life history: a re-analysis of Salisbury (1942, 1974). New Phytol 138:163–167CrossRefGoogle Scholar
  45. Tutin TG (1957) Biological flora of the British Isles. Allium ursinum L. J Ecol 45:1003–1010CrossRefGoogle Scholar
  46. Vandelook F, Van Assche JA (2008a). Temperature requirements for seed germination and seedling development determine timing of seedling emergence of three monocotyledonous temperate forest spring geophytes. Ann Bot (Oxford) 102:865–875CrossRefGoogle Scholar
  47. Vandelook F, Van Assche JA (2008b). Deep complex morphophysiological dormancy in Sanicula europaea (Apiaceae) fits a recurring pattern of dormancy types in genera with an Arcto-Tertiary distribution. Botany 86:1370–1377CrossRefGoogle Scholar
  48. Vandelook F, Janssens SB, Probert RJ (2012) Relative embryo length as an adaptation to habitat and life cycle in Apiaceae. New Phytol 195:479–487CrossRefGoogle Scholar
  49. Vandelook F, Newton RJ, Carta A (2018) Photophobia in Lilioid monocots: photoinhibition of seed germination explained by seed traits, habitat adaptation and phylogenetic inertia. Ann Bot (Oxford) 121:405–413CrossRefGoogle Scholar
  50. Walck JL, Baskin CC, Baskin JM (2000) Seeds of Thalictrum mirabile (Ranunculaceae) require cold stratification for loss of nondeep simple morphophysiological dormancy. Canad J Bot 77:1769–1776CrossRefGoogle Scholar
  51. Whigham DF (2004) Ecology of woodland herbs in temperate deciduous forests. Annual Rev Ecol Evol Syst 35:583–621CrossRefGoogle Scholar
  52. Wilkin P, Schols P, Chase MW, Chayamarit K, Furness CA, Huysmans S, Rakotonasolo F, Smets E, Thapyai, C (2005) A plastid gene phylogeny of the yam genus, Dioscorea: roots, fruits and Madagascar. Syst Bot 30:736–749CrossRefGoogle Scholar
  53. Wurdack KJ, Hoffmann P, Chase MW (2005) Molecular phylogenetic analysis of uniovulate Euphorbiaceae (Euphorbiaceae sensu stricto) using plastid rbcL and trnL-F DNA sequences. Amer J Bot 92:1397–1420CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2019

Authors and Affiliations

  1. 1.Botanic Garden MeiseMeiseBelgium
  2. 2.Department of Biology, Unit of BotanyPisa UniversityPisaItaly

Personalised recommendations