Advertisement

Seed germination and seedling recruitment of Dimorphandra mollis Benth. in a Neotropical savanna subjected to prescribed fires

  • Fabian BorghettiEmail author
  • Luciana Aparecida Zago de Andrade
  • Isabel Belloni Schmidt
  • Eduardo Rogério Moribe Barbosa
Article

Abstract

Recruitment in savanna environments represents a high-risk step in a plant’s life cycle. Dimorphandra mollis Benth (Fabaceae) is a savanna tree species which produces dry fruits holding coat-imposed dormant seeds dispersed late in the dry season. We investigated fire effects on fruit dehiscence, seed dormancy breaking and seed viability, and also monitored seedling recruitment and survival for 44 months in a savanna area subjected to biennial controlled fires in central Brazil. Fruits were laid aboveground, and seeds were buried before and after an experimental fire set in August 1999. Fruits started to open after the experimental fire up to the following rainy season. Around one fourth of the seeds removed from these fruits were viable but required scarification to imbibe, indicating that fruits do not totally insulate seeds, and fire does not break seed dormancy. No seedling emerged from buried seeds during the first rainy season after the fire, but fourteen seedlings emerged during the second rainy season. Half of the seedlings died and the other half resprouted after a second experimental fire set during the third dry season. In the third rainy season, thirteen new seedlings emerged, but two died in the fourth dry season. We found that fire was a more determinant constraint to seedling survival than the dry season itself. After 44 months we recovered 27 viable seeds from those initially buried, suggesting that seeds of D. mollis have the potential to establish a persistent seed bank. As expected for savanna trees, we found that D. mollis seeds and seedlings may persist in environments periodically disturbed by fires.

Keywords

Germination Recruitment Fire Cerrado Savanna Seed bank 

Notes

Acknowledgements

The first author thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq for his research grant (Process number 310916/2014-3). The authors thank the staff of RECOR – Reserva Ecológica do Instituto Brasileiro de Geografia e Estatística (IBGE) for all facilities and support to conduct this research.

Supplementary material

12224_2019_9338_MOESM1_ESM.doc (42 kb)
ESM 1 (DOC 42 kb)

References

  1. Andrade LAZ, Miranda HS (2014) The dynamics of the soil seed bank after a fire event in a woody savanna in central Brazil. Pl Ecol 215:1199–209CrossRefGoogle Scholar
  2. Archer SR, Andersen EM, Predick KI, Schwinning S, Steidl RJ, Woods SR (2017) Woody plant encroachment: causes and consequences. In Briske D (eds) Rangeland systems. Springer series on environmental management. Springer, Cham, pp 25–129Google Scholar
  3. Auld T D, Bradstock RA (1996). Soil temperatures after the passage of a fire: Do they influence the germination of buried seeds? Austral J Ecol 21:106–109CrossRefGoogle Scholar
  4. Bizerril MXA, Rodrigues FHG, Hass A (2005) Fruit consumption and seed dispersal of Dimorphandra mollis Benth. (Leguminosae) by the lowland tapir in the Cerrado of central Brazil. Brazil J Biol 65:407–413CrossRefGoogle Scholar
  5. Carnicer J, Coll M, Ninyerola M, Pons X, Sánchez G, Peñuelas J (2011) Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc Natl Acad Sci USA 108:1474–1478CrossRefGoogle Scholar
  6. Chaves MMF, Usberti R (2003) Previsão da longevidade de sementes de faveiro (Dimorphandra mollis Benth.). Rev Brasil Bot 26:557–564CrossRefGoogle Scholar
  7. Chidumayo EN (2008) Implications of climate warming on seedling emergence and mortality of African savanna woody plants. Pl Ecol 198:61–71CrossRefGoogle Scholar
  8. Chidumayo EN (2013) Effects of seed burial and fire on seedling and sapling recruitment, survival and growth of African savanna woody plant species. Pl Ecol 214:103–114CrossRefGoogle Scholar
  9. Cirne P, Miranda HS (2008) Effects of prescribed fires on the survival and release of seeds of Kielmeyera coriacea (Spr.) Mart. (Clusiaceae) in savannas of central Brazil. Brazil J Pl Physiol 20:197–204CrossRefGoogle Scholar
  10. Cox DR (1972) Regression models and life tables (with discussion). J Roy Statist Soc B 34:187–220Google Scholar
  11. Crawley MJ (2012) The R book. 2nd Edition. Wiley, Hoboken, NJ, USA. pp 1076Google Scholar
  12. Silva, FAM da, Assad ED, Evangelista BA. (2008) Caracterização climática do bioma Cerrado. In Sano SM, Almeida SP, Ribeiro JF, editores. Cerrado: ecologia e flora. Brasília, Embrapa, pp 71–88Google Scholar
  13. Dias BFdS, Miranda HS (2010) O Projeto fogo. In Miranda, HS (ed.) Efeitos do regime do fogo sobre a estrutura de comunidades de Cerrado: resultados do Projeto Fogo. Ibama. Brasília, DF, pp 15–22.Google Scholar
  14. Dias IFO, Miranda AC, Miranda HS (1996) Efeitos de queimadas no microclima de solos de campos de Cerrado – DF/Brasil. In Miranda HS, Saito CH, Dias BF de S (orgs) Impactos dec queimadas em áreas de Cerrado e Restinga. Departamento de Ecologia. Universidade de Brasília, DF. pp 11–19.Google Scholar
  15. Donohue K, de Casas RR, Burghardt L, Kovach K, Willis CG (2010) Germination, postgermination adaptation, and species ecological ranges. Ann Rev Ecol Evol Syst 41:293–319CrossRefGoogle Scholar
  16. Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  17. Ferreira AV, Bruna EM, Vasconcelos HL (2011) Seed predators limit plant recruitment in Neotropical savannas. Oikos 120:1013–1022CrossRefGoogle Scholar
  18. Ferreira RA, Botelho AS, Davide AC, Malavasi MM (2001) Morfologia de frutos, sementes, plântulas e plantas jovens de Dimorphandra mollis Benth. – faveira (Leguminosae-Caesalpinioideae). Rev Brasil Bot 24:303–309CrossRefGoogle Scholar
  19. França H (2010) Os incêndios de 2010 nos parques nacionais do Cerrado. Relatório técnico. Universidade Federal do ABC, 16 ppGoogle Scholar
  20. Franco AC, Souza MP, Nardoto GB (1996). Estabelecimento e crescimento de Dalbergia miscolobium Benth. em áreas de campo sujo e cerrado no D.F. In Miranda HS, Saito CH, Dias BF de S (orgs) Impactos dec queimadas em áreas de Cerrado e Restinga. Departamento de Ecologia. Universidade de Brasília, DF, pp 84–92Google Scholar
  21. Freitas EM, Boldrini II, Muller SC, Verdum R (2009) Florística e fitossociologia da vegetação de um campo sujeito à arenização no sudoeste do Rio Grande do Sul, Brasil. Acta Bot Brasil 23:414–426CrossRefGoogle Scholar
  22. Gardarin A, Dürr C, Mannino MR, Busset H, Colbach N (2010) Seed mortality in the soil is related to seed coat thickness. Seed Sci Res 20:243–256CrossRefGoogle Scholar
  23. Gignoux J, Lahoreau G, Julliard R, Barot S (2009) Establishment and early persistence of tree seedlings in an annually burned savanna. J Ecol 97:484–495CrossRefGoogle Scholar
  24. Goldstein G, Meinzer FC, Bucci SJ, Scholz FG, Franco AC, Hoffmann WA (2008) Water economy of Neotropical savanna trees: some paradigms revisited. Tree Physiol 28:395–404CrossRefGoogle Scholar
  25. Grubb PJ (1977) The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol Rev 52:107–145CrossRefGoogle Scholar
  26. Hoffmann WA (1998) Post-burn reproduction of woody plants in a neotropical savanna: the relative importance of sexual and vegetative reproduction. J Appl Ecol 35:422–433CrossRefGoogle Scholar
  27. Hoffmann WA (2000) Post-establishment seedling success in the Brazilian cerrado: a comparison of savanna and forest species. Biotropica 32:62–69CrossRefGoogle Scholar
  28. Hoffmann WA, Franco AC (2003) Comparative growth analysis of tropical forest and savanna woody plants using phylogenetically independent contrasts. J Ecol 91:475–484CrossRefGoogle Scholar
  29. Hoffmann WA, Orthen B, Franco AC (2004) Constraints to seedling success of savanna and forest trees across the savanna-forest boundary. Oecologia 140:252–260CrossRefGoogle Scholar
  30. Kanegae MF, Braz VS, Franco AC (2000) Efeitos da seca sazonal e disponibilidade de luz na sobrevivência e crescimento de Bowdichia virgilioides em duas fitofisionomias típicas do Brasil Central. Rev Brasil Bot 23:457–466Google Scholar
  31. Keeley JE, Fotheringham C J (2000) Role of fire in regeneration from seed. In Seeds: the ecology of regeneration in plant communities, 2nd (ed. M Fenner). CABI Publishing, Wallingford, pp 311–331CrossRefGoogle Scholar
  32. Kraaij T, Ward D (2006) Effects of rain, nitrogen, fire and grazing on tree recruitment and early survival in bush-encroached savanna, South Africa. Pl Ecol 186:235–246CrossRefGoogle Scholar
  33. Kuhlmann M (2012) Frutos e sementes atrativos para a fauna: guia de campo. Brasília, DF, Rede de Sementes, 360 ppGoogle Scholar
  34. Miranda AC, Miranda HS, Dias IFO, Dias BFS (1993) Soil and air temperatures during prescribed Cerrado fires in central Brazil. J Trop Ecol 9:313–320CrossRefGoogle Scholar
  35. Moore RP (1973) Tetrazolium staining for assessing seed quality. In Heydecker W (ed). Seed ecology. Butter-worths, London, UK, pp 347–366.Google Scholar
  36. Nardoto GB, Souza MP, Franco AC (1998) Estabelecimento e padrões sazonais de produtividade de Kielmeyera coriacea (Spr) Mart. nos cerrados do Planalto Central: efeitos do estresse hídrico e sombreamento. Rev Brasil Bot 21:313–319Google Scholar
  37. Oliveira Filho AT, Ratter, JA (2000) Padrões florísticos das matas ciliares da região do cerrado e a evolução das paisagens do Brasil Central durante o Quaternário Tardio. In Rodrigues RR, Leitão Filho HF (eds.). Matas ciliares: conservação e recuperação. São Paulo: Universidade de São Paulo; FAPESP, pp 73–89Google Scholar
  38. Ooi MK, Auld TD, Denham A J (2009) Climate change and bet-hedging: interactions between increased soil temperatures and seed bank persistence. Global Change Biol 15:2375–2386CrossRefGoogle Scholar
  39. Ooi MKJ, Auld TD, Denham AJ (2012) Projected soil temperature increase and seed dormancy response along an altitudinal gradient: implications for seed bank persistence under climate change. Pl & Soil 353:289–30CrossRefGoogle Scholar
  40. R Core Team (2018) R: A Language and Environment for Statistical Computing. Available at https://www.R-project.org
  41. Ramos DM, Liaffa ABS, Diniz P, Munhoz CBR, Ooi MKJ, Borghetti F, Valls JFM (2016) Seed tolerance to heating is better predicted by seed dormancy than by habitat type in Neotropical savanna grasses. Int J Wildland Fire 25:1273–1280CrossRefGoogle Scholar
  42. Ratter JA, Bridgewater S, Ribeiro JF (2003) Analysis of the floristic composition of Brazilian cerradão vegetation III: comparison of the woody vegetation of 376 areas. Edinburgh J Bot 60:57–109CrossRefGoogle Scholar
  43. Reatto A, Correia JR, Spera ST, Martins E de S (2008) Solos do Bioma Cerrado: aspectos pedológicos. In Sano SM, Almeida SP, Ribeiro JF, editores. Cerrado: ambiente e flora. Planaltina-DF. Embrapa-CPAC, pp 109–149Google Scholar
  44. Ribeiro JF, Walter BMT (2008) As principais fitofisionomias do bioma cerrado. In Sano SM, Almeida SP, Ribeiro JF, editores. Cerrado: ecologia e flora. Brasília, Embrapa, pp 151–212Google Scholar
  45. Ribeiro LC, Pedrosa M, Borghetti F (2013) Heat shock effects on seed germination of five Brazilian savanna species. Pl Biol 15:152–157CrossRefGoogle Scholar
  46. Saboya P, Borghetti F (2012) Germination, initial growth, and biomass allocation in three native Cerrado species. Brazil J Bot 35:129–135CrossRefGoogle Scholar
  47. Salazar A, Goldstein G (2014) Effects of fire on seedling diversity and plant reproduction (sexual vs. vegetative) in neotropical savannas differing in tree density. Biotropica 46:139–147CrossRefGoogle Scholar
  48. Salazar A, Goldstein G, Franco AC, Miralles-Wilhelm F (2011) Timing of seed dispersal and dormancy, rather than persistent soil seed-banks, control seedling recruitment of woody plants in Neotropical savannas. Seed Sci Res 21:103–116CrossRefGoogle Scholar
  49. Sano EE, Rosa R, Brito JLS, Ferreira LG (2008) Mapeamento semidetalhado do uso da terra do Bioma Cerrado. Pesq Agropecu Brasil 43:153–156CrossRefGoogle Scholar
  50. Schmidt IB, Sampaio AB, Borghetti F (2005) Efeitos da época de queima sobre a reprodução sexuada e estrutura populacional de Heteropterys pteropetala (Adr. Juss.), Malpighiaceae, em áreas de Cerrado sensu stricto submetidas a queimas bienais. Acta Bot Brasil 19:927–934CrossRefGoogle Scholar
  51. Scott RL, Hamerlynck EP, Jenerette GD, Moran MS, Barron-Gafford GA (2010) Carbon dioxide exchange in a semidesert grassland through drought-induced vegetation change. J Geophys Res 115:G03026Google Scholar
  52. Silva Júnior MC (2012) 100 árvores do cerradosentido restrito: guia de campo. Brasília, DF. Ed. Rede de sementes do cerrado, 304 ppGoogle Scholar
  53. Silva Júnior MC, Felfili JM (1996) A vegetação da Estação Ecológica de Águas Emendadas. Brasília, DF, Instituto de Ecologia e Meio Ambiente do Distrito Federal, 43 ppGoogle Scholar
  54. Simon MF, Grether R, Queiroz LP, Skema C, Pennington RT, Hughes CE (2009) Recent assembly of the Cerrado, a Neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc Natl Acad Sci USA 106:20359–20364CrossRefGoogle Scholar
  55. Thompson PA (1970) Germination of Caryophyllaceae in relation to their geographical distribution in Europe. Ann Bot (Oxford) 34:427–449CrossRefGoogle Scholar
  56. Venable DL (2007) Bet hedging in a guild of annual deserts. Ecology 88:1086–90CrossRefGoogle Scholar
  57. Walk J, Hagan S, Lange A (2011) Adapting conservation to a changing climate: an update to the Illinois Wildlife Action Plan. Report to the Illinois Department of Natural Resources. Illinois Chapter of the Nature Conservancy, Peoria, USAGoogle Scholar
  58. Williams RJ, Carter J, Duff GA, Woinarski JCZ, Cook GD, Farrer SL (2005) Carbon accounting, land management, science and policy uncertainty in Australian savanna landscapes: introduction and overview. Austral J Bot 53:583–588CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2019

Authors and Affiliations

  1. 1.Departamento de BotânicaUniversidade de BrasíliaBrasília (DF)Brazil
  2. 2.Agência Nacional de Águas (ANA)Brasília (DF)Brazil
  3. 3.Departamento de EcologiaUniversidade de BrasíliaBrasília (DF)Brazil

Personalised recommendations