Skip to main content

Advertisement

Log in

Plant species composition shifts in the Tatra Mts as a response to environmental change: a resurvey study after 90 years

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Mountain vegetation is often considered highly sensitive to climate and land-use changes due to steep environmental gradients determining local plant species composition. In this study we present plant species compositional shifts in the Tatra Mts over the past 90 years and discuss the potential drivers of the changes observed. Using historical vegetation studies of the region from 1927, we resurveyed 76 vegetation plots, recording the vascular flora of each plot using the same methodology as in the original survey. We used an indirect method to quantify plant species compositional shifts and to indicate which environmental gradients could be responsible for these shifts: by calculating shifts in estimated species optima as reflected in shifts in the ecological indicator values of co-occurring species. To find shifts in species composition, focusing on each vegetation type separately, we used ordination (DCA). The species optimum changed significantly for at least one of the tested environmental gradients for 26 of the 95 plant species tested; most of these species changed in terms of the moisture indicator value. We found that the strongest shifts in species composition were in mylonite grassland, snowbed and hygrophilous tall herb communities. Changes in precipitation and increase in temperature were found to most likely drive compositional shifts in vegetation resurveyed. It is likely that the combined effect of climate change and cessation of sheep grazing has driven a species composition shift in granite grasslands communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • ACIA 2005. Arctic climate assessment. Scientific report. Cambridge Univ. Press

  • Amezaga I, Mendarte S, Albizu I, Besga G, Garbisu C, Onaindia M (2004) Grazing intensity, aspect, and slope effects on limestone grassland structure. J Range Managem 57:606–612

    Article  Google Scholar 

  • Ameztegui A, Coll L, Brotons L, Ninot JM (2015) Land-use legacies rather than climate change are driving the recent upward shift of the mountain tree line in the Pyrenees. Global Ecol Biogeogr 25:263–273

    Article  Google Scholar 

  • Austrheim G, Mysterud A, Pedersen B, Halvorsen R, Hassel K, Evju M (2008) Large scale experimental effects of three levels of sheep densities on an alpine ecosystem. Oikos 117:837-846

    Article  Google Scholar 

  • Batllori E, Camarero JJ, Gutiérrez E (2010). Current regeneration patterns at the tree line in the Pyrenees indicate similar recruitment processes irrespective of the past disturbance regime. J Biogeogr 37:1938–1950

    Google Scholar 

  • Baur B, Cremene C, Groza G, Rakosy L, Schileyko AA, Baur A et al (2006) Effects of abandonment of subalpine hay meadows on plant and invertebrate diversity in Transylvania, Romania. Biol Conservation 132:261–273

    Article  Google Scholar 

  • Becker A, Körner C, Brun JJ, Guisan A, Tappeiner U (2007) Ecological and land use studies along elevational gradients. Mountain Res Developm 27:58–65

    Article  Google Scholar 

  • Björk RG, Molau U (2007). Ecology of alpine snowbeds and the impact of global change. Arctic Antarc Alpine Res 39:34–43

    Article  Google Scholar 

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M et al (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59

    Article  CAS  Google Scholar 

  • Britton AJ, Beale CM, Towers W, Hewison RL (2009) Biodiversity gains and losses: evidence for homogenisation of Scottish alpine vegetation. Biol Conservation 142:1728–1739

    Article  Google Scholar 

  • Carbognani M, Tomaselli M, Petraglia A (2014) Current vegetation changes in an alpine late snowbed community in the south-eastern Alps (N-Italy). Alpine Bot 124:105–113

    Article  Google Scholar 

  • Chytrý M, Hejcman M, Hennekens SM, Schellberg J (2009) Changes in vegetation types and Ellenberg indicator values after 65 years of fertilizer application in the Rengen Grassland Experiment Germany. Appl Veg Sci 12:167-176

    Article  Google Scholar 

  • Chytrý M, Tichý L, Hennekens SM, Schaminée JHJ (2014) Assessing vegetation change using vegetation-plot databases: a risky business. Appl Veg Sci 17:32–41

    Article  Google Scholar 

  • Climate data. Available at https://en.tutiempo.net [accessed 28.08.2017]

  • Daniëls FJA, de Molenaar JG, Chytrý M, Tichý L (2011) Vegetation change in Southeast Greenland? Tasiilaq revisited after 40 years. Appl Veg Sci 14:230–241

    Article  Google Scholar 

  • Dullinger S, Dirnböck T, Grabherr G (2003) Patterns of shrub invasion into high mountain grasslands of the Northern Calcareous Alps, Austria. Arctic Antarc Alpine Res 35:434–441

    Article  Google Scholar 

  • Dullinger S, Kleinbauer I, Pauli H, Gottfried M, Brooker R, Nagy L et al (2007) Weak and variable relationships between environmental severity and small-scale co-occurrence in alpine plant communities. J Ecol 95:1284–1295

    Article  Google Scholar 

  • Dupré C, Diekmann M (2001) Differences in species richness and life-history traits between grazed and abandoned grasslands in southern Sweden. Ecography 24:275–286

    Article  Google Scholar 

  • Dye DG (2002) Variability and trends in the annual snowcover cycle in Northern Hemisphere land areas, 1972–2000. Hydrol Processes 16:3065–3077

    Article  Google Scholar 

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W (1991) Zeigerwerte von Pflanzen in Mitteleuropa (Indicator values of vascular plants in Central Europe). Scripta Geobot 18:1–248

    Google Scholar 

  • Elumeeva TG, Onipchenko VG, Egorov AV, Khubiev AB, Tekeev DK, Soudzilovskaia NA, Cornelissen JHC (2013) Long-term vegetation dynamic in the Northwestern Caucasus: Which communities are more affected by upward shifts of plant species? Alpine Bot 123:77–85

    Article  Google Scholar 

  • Engler R, Randin CF, Thuiller W, Dullinger S, Zimmermann NE, Bastos AM et al (2011) 21st century climate change threatens mountain flora unequally across Europe. Global Change Biol 17:2330–2341

    Article  Google Scholar 

  • Erschbamer B, Unterluggauer P, Winkler E, Mallaun M (2011) Changes in plant species diversity revealed by long-term monitoring on mountain summits in the Dolomites (northern Italy). Preslia 83:387–401

    Google Scholar 

  • Euro+Med (2006-) Euro+MedPlantBase – the information resource for Euro-Mediterranean plant diversity. Available at http://ww2.bgbm.org/EuroPlusMed [accessed 29.05.2017]

  • Evangelista A, Frate L, Carranza ML, Attorre F, Pelino G, Stanisci A (2016) Changes in composition, ecology and structure of high-mountain vegetation: a re-visitation study over 42 years. AoB Plants 8:plw004

    Article  Google Scholar 

  • Felde VA, Kapfer J, Grytnes J-A (2012) Upward shift in elevational plant species ranges in Sikkilsdalen, central Norway. Ecography 35:922–932

    Article  Google Scholar 

  • Fernández-Calzado MR, Morelo Mesa J, Merzouki A, Porcel MC (2012) Vascular plant diversity and climate change in the upper zone of Sierra Nevada, Spain. Pl Biosyst 146:1044–1053

    Article  Google Scholar 

  • Frei E, Bodin J, Walther GR (2010) Plant species’ range shifts in mountainous areas – all uphill from here? Bot Helv 120:117–128

    Article  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  Google Scholar 

  • Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18:571–582

    Article  Google Scholar 

  • Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barancok P, Alonso BJL et al (2012) Continent-wide response of mountain vegetation to climate change. Nat Clim Change 2:111–115

    Article  Google Scholar 

  • Grytnes J-A, Kapfer J, Jurasinski G, Birks HH, Henriksen H, Klanderud K et al (2014) Identifying the driving factors behind observed elevational range shifts on European mountains. Global Ecol Biogeogr 23:876–884

    Article  Google Scholar 

  • Halpin PN (1994) Latitudinal Variation in Montane Ecosystem Response to Potential Climatic Change, in Beniston, M. (ed.), Mountain Ecosystems in Changing Climates, Routledge Publishing Company, London and New York, 180–203

  • Hiller B, Nuebel A, Broll G, Holtmeier F-K (2005) Snowbeds on silicate rocks in the upper Engadine (Central Alps, Switzerland) - pedogenesis and interactions among soil, vegetation and snow cover. Arctic Antarc Alpine Res 37:465–476

    Article  Google Scholar 

  • Hole L, Engardt M (2008) Climate change impact on atmospheric nitrogen deposition in northwestern Europe: a model study. Ambio 37(1):9–17. https://doi.org/10.1579/0044-7447

  • Holzinger B, Hülber K, Camenisch M, Grabherr G (2008) Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates. Pl Ecol 195:179–196

    Article  Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: Is the signal already apparent? Trends Ecol Evol 15:56–61

    Article  CAS  Google Scholar 

  • Imhof P, Nesje A, Nussbaumer SU (2011) Climate and glacier fluctuations at Jostedalsbreen and Følgefonna, southwestern Norway and in the western Alps from the ‘Little Ice Age’ until the present: the influence of the North Atlantic Oscillation. The Holocene 22:235–247

    Article  Google Scholar 

  • Kapfer J, Grytnes J-A, Gunnarsson U, Birks HJB (2011) Fine-scale changes in vegetation composition in a boreal mire over 50 years. J Ecol 99:1179–1189

    Article  Google Scholar 

  • Kapfer J, Hédl R, Jurasinski G, Kopecký M, Schei FH, Grytnes J-A (2017) Resurveying historical vegetation data – opportunities and challenges. Appl Veg Sci 20:164–171

    Article  Google Scholar 

  • Klanderud K, Birks HJB (2003) Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. The Holocene 13:1–6

    Article  Google Scholar 

  • Kopczyńska-Jaworska B (1985) Pasterstwo (The Sheperding). In Trafas K (eds) Atlas Tatrzańskiego Parku Narodowego (Atlas of the Tatra National Park). Tatrzański Park Narodowy, Polskie Towarzystwo Przyjaciół Nauk o Ziemi, Zakopane-Kraków

  • Kopeckỳ M, Macek M (2015) Vegetation resurvey is robust to plot location uncertainty. Diversity & Distrib 21:322–330

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Kozłowska A, Rączkowska Z (2006) Effect of snow patches on vegetation in the high-mountain nival gullies (Tatra Mts, Poland) Polish J Ecol 54:69–90.

    Google Scholar 

  • Kucharzyk S, Augustyn M (2010) Trwałość polan reglowych w Bieszczadzkim Parku Narodowym (Stability of mountain glades in the Bieszczady National Park). Roczn Bieszczadzkie 18:45–58

    Google Scholar 

  • Lenoir J, Svenning JC (2015) Climate-related range shifts – a global multidimensional synthesis and new research directions. Ecography 38:15–28

    Article  Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Matthews JA (1992) The ecology of recently-deglaciated terrain: a geoecological approach to glacier forelands and primary succession. Cambridge University Press, Cambridge

    Google Scholar 

  • Matteodo M, Wipf S, Stöckli W, Rixen C, Vittoz P (2013) Elevation gradient of successful plant traits for colonizing alpine summits under climate change. Environ Res Lett. https://doi.org/10.1088/1748-9326/8/2/024043

    Article  Google Scholar 

  • Matuszkiewicz W (2016) Przewodnik do oznaczania zbiorowisk roślinnych Polski (A guide for identification of plant communities in Poland). PWN, Warszawa

    Google Scholar 

  • Maurset MU (2015) Long-term effects of shifts in grazing pressure on alpine plant species along an elevational gradient. MSc in Biology, Norwegian University of Science and Technology, Department of Biology

    Google Scholar 

  • Michelsen O, Syverhuset AO, Pedersen B, Holten JI (2011) The Impact of Climate Change on Recent Vegetation Changes on Dovrefjell, Norway. Diversity 3:91–111

    Article  Google Scholar 

  • Mirek Z, Piękoś-Mirkowa H (1992) Flora and vegetation of the Polish Tatra Mts. Mountain Res Developm 12:147–173

    Article  Google Scholar 

  • Naaf T, Wulf M (2010) Habitat specialists and generalists drive homogenization and differentiation of temperate forest plant communities at the regional scale. Biol Conserv 143:848–855

    Article  Google Scholar 

  • Olden J, Le Roy PN, Douglas MR, Douglas ME, Fausch KD (2004) Ecological and evolutionary consequences of biotic homogenization. - Trends Ecol Evol 19:18–24

    Article  Google Scholar 

  • Odland A, Høitomt T, Olsen SL (2010) Increasing vascular plant richness on 13 high mountain summits in southern Norway since the early 1970s. Arctic Antarc Alpine Res 42:458–470

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB et al (2016) Package ‘vegan’. Available at https://cran.r-project.org/web/packages/vegan/index.html

  • Olofsson J, Oksanen L, Callaghan T, Hulme PE, Oksanen T, Suominen O (2009) Herbivores inhibit climate-driven shrub expansion on the tundra. Global Change Biol 15:2681–2693

    Article  Google Scholar 

  • Parolo G, Rossi G (2008) Upward migration of vascular plants following a climate warming trend in the Alps. Basic Appl Ecol 9:100–107

    Article  Google Scholar 

  • Pauli H, Gottfried M, Grabherr G (2003) Effects of climate change on the alpine and nival vegetation of the Alps. J Mountain Ecol 7:9–12

    Google Scholar 

  • Pavlů V, Hejcman M, Pavlů L, Gaisler J, Nežerková P, Guerovich M (2005) Vegetation changes after cessation of grazing management in the Jizerské Mountains (Czech Republic). Ann Bot Fenn 42:343–349

    Google Scholar 

  • Pawłowska S (1956) Świat roślinny Tatr (Plant cover of the Tatra Mts) In Szafer W (eds) Tatrzański Park Narodowy (Tatra National Park). Polska Akademia Nauk, Zakład Ochrony Przyrody, Wydawnictwa Popularnonaukowe, Kraków, pp 257–273

    Google Scholar 

  • Pawłowski B, Sokołowski M, Wallisch K (1928) Die Pflanzenassoziationen des Tatra-Gebirges. Teil 7. Die Pflanzenassoziationen und die Flora des Morskie Oko Tales (Plant communities of the Tatra Mts. Part 7. Plant communities and flora of the Morskie Oko Valley). Bull Int Acad Polon Sci, Cl Sci Math, Sér B, Sci Nat 2:197–272

    Google Scholar 

  • Piękoś-Mirkowa H, Mirek Z (1996) Zbiorowiska roślinne (Plant communities). In Mirek Z (eds) Przyroda Tatrzańskiego Parku Narodowego (Nature of the Tatra National Park) Wydawnictwa Tatrzańskiego Parku Narodowego, Kraków-Zakopane, pp 27–35

  • Piękoś-Mirkowa H, Mirek Z, Miechówka A (1996) Endemic vascular plants in the Polish Tatra Mts. – distribution and ecology. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Radwańska-Paryska Z, Paryski WH (1995) Wielka encyklopedia tatrzańska (The great encyclopedy of the Tatra Mts). Wydawnictwa Górskie, Poronin

    Google Scholar 

  • Raible CC, Casty C, Luterbacher J, Pauling A, Esper J, Frank DC, Büntgen U, Roesch AC, Tschuck P, Wild M, Vidale P-L, Schär C, Wanner H (2006) Climate variability - observations, reconstructions, and model simulations for the Atlantic-European and Alpine region from 1500–2100 AD. Clim Change 79:9–29

    Article  Google Scholar 

  • Ross LC, Woodin SJ, Hester AJ, Thompson DBA, Birks HJB (2012) Biotic homogenization of upland vegetation: patterns and drivers at multiple spatial scales over five decades. - J Veg Sci 23:755–770

    Article  Google Scholar 

  • Sandvik SM, Odland A (2014) Changes in alpine snowbed-wetland vegetation over three decades in northern Norway. Nordic J Bot 32:377–384

    Article  Google Scholar 

  • Schöb C, Kammer PM, Choler P, Veit H (2008) Small-scale plant species distribution in snowbeds and its sensitivity to climate change. Pl Ecol 200:91–104

    Article  Google Scholar 

  • Skawiński P, Zięba T, Babicz J (1995) Przyroda i gospodarka (Nature and management). In Skawiński, P, Zięba T, Babicz J (eds) Tatrzańska Wspólnota Leśna w Witowie (The Tatra Mts’ Community of Eight Villages in Witów) Podhalańskie Towarzystwo Przyjaciół Nauk w Nowym Targu, Nowy Targ, pp 141–158

  • Spasojevic MJ, Bowman WD, Humphries HC, Seastedt TR, Suding KN (2013) Changes in alpine vegetation over 21 years: Are patterns across a heterogeneous landscape consistent with predictions? Ecosphere 4:1–18

    Article  Google Scholar 

  • Speed JDM, Austrheim G, Hester AJ, Mysterud A (2012) Elevational advance of alpine plant communities is buffered by herbivory. J Veg Sci 23:617–625

    Article  Google Scholar 

  • Stöckli V, Wipf S, Nilsson C, Rixen C (2011) Using historical plant surveys to track biodiversity on mountain summits. Pl Ecol Diversity 4:415–425

    Article  Google Scholar 

  • Szafer W, Pawłowski B, Kulczyński S (1923) Die Pflanzenassoziationen des Tatra-Gebirges. Teil 1. Die Pflanzenassoziationen des Chochołowska-Tales (Plant communities of the Tatra Mts. Part 1. Plant communities of the Chochołowska Valley). Bull Int Acad Polon Sci, Cl Sci Math, Sér B, Sci Nat 1:1–66

    Google Scholar 

  • Theurillat JP, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109

    Article  CAS  Google Scholar 

  • van der Maarel E (1979) Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39:97–114

    Article  Google Scholar 

  • Vassilev K, Pedashenko H, Nikolov SC, Apostolova I, Dengler J (2011) Effect of land abandonment on the vegetation of upland semi-natural grasslands in the Western Balkan Mts., Bulgaria. Pl Biosyst 145:654–665

    Article  Google Scholar 

  • Vittoz P, Bodin J, Ungricht S, Burga CA, Walther GR (2008) One century of vegetation change on Isla Persa, a nunatak in the Bernina massif in the Swiss Alps. J Veg Sci 19:671–680

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC et al (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  Google Scholar 

  • Wesołowska M (2009). Zmiany roślinności łąkowej Tatr Zachodnich i ich przedpola w ciągu ostatniego półwiecza (Changes in meadow vegetation of the Western Tatra Mts and their foreland in the last half century) In Guzik M (ed) Długookresowe zmiany w przyrodzie i użytkowaniu TPN (Long-term changes in nature and management of Tatra National Park) Wydawnictwa Tatrzańskiego Parku Narodowego, Zakopane, pp 91−104

  • Wilson S, Nilsson C (2009) Arctic alpine vegetation change over 20 years. Glob Change Biol 15:1676–1684

    Article  Google Scholar 

  • Wojterska M, Wojterski T (2007) Zróżnicowanie zbiorowisk ziołorośli i traworośli w Dolinie Roztoki w Tatrach Wysokich (Diversity of tall herbs and grasses communities in the Roztoka Valley in the High Tatras) In Kępczyńska E, Kępczyński J (eds) Botanika w Polsce - sukcesy problemy perspektywy. Streszczenia referatów i plakatów (Botany in Poland – successes problems perspectives. Abstracts of talks and posters) 54 Zjazd PTB, Szczecin, p 109

  • Woś A (1999) Klimat Polski (Climate of Poland). PWN, Warszawa

    Google Scholar 

  • Zarzycki K, Trzcińska-Tacik H, Różanski W, Szeląg Z, Wołek J, Korzeniak U (2002) Ecological indicator values of vascular plants of Poland. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków

    Google Scholar 

Download references

Acknowledgements

The research leading to these results received funding from the Polish-Norwegian Research Programme operated by the National Centre for Research and Development under the Norwegian Financial Mechanism 2009–2014 in the frame of project KlimaVeg, contract No. Pol-Nor/196829/87/2013. We are very grateful to mgr Marcin Dyderski for help in map preparation, to prof. dr hab. Maria Wojterska for merithoric support and to Mr Jakub Zaremba, as well as employees of the Tatra National Park for their great help in our field work: dr inż. Tomasz Zwijacz-Kozica, mgr inż. Marcin Helios-Strączek, mgr inż. Piotr Krzan; mgr inż. Filip Zięba, Bartosz Zwijacz-Kozica, Grzegorz Bryniarski and Wojciech Łukaszczyk. We thank the two anonymous Reviewers for their very helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patryk Czortek.

Electronic supplementary material

Table S1

Climatic data from Zakopane, Kasprowy Wierch and Łomnica. (XLSX 18.4 kb)

Table S2

List of plant species recorded historically and recently with metadata for the plots. (XLSX 31 kb)

Table S3

Correlation matrix of ecological indicator values. (XLSX 18 kb) (XLSX 8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czortek, P., Kapfer, J., Delimat, A. et al. Plant species composition shifts in the Tatra Mts as a response to environmental change: a resurvey study after 90 years. Folia Geobot 53, 333–348 (2018). https://doi.org/10.1007/s12224-018-9312-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-018-9312-9

Keywords

Navigation