Folia Geobotanica

, Volume 53, Issue 1, pp 115–131 | Cite as

Phylogenetic relationships and intraspecific diversity of a North Patagonian Fescue: evidence of differentiation and interspecific introgression at peripheral populations

  • A. S. López
  • M. M. Azpilicueta
  • D. R. López
  • G. L. Siffredi
  • P. Marchelli


Peripheral sites usually offer suboptimal conditions for species with wide distributions, where expression of phenotypic variability and potential interspecific hybridization might be enhanced. The Patagonian steppe, the largest and southernmost dryland ecosystem in South America, is characterized by natural rangelands dominated by grasses. Festuca pallescens is a keystone species with a wide distribution in Patagonia over diverse environments reaching the extreme arid zones in the Somuncura plateau, a biogeographical island. Our aim is to study the phylogenetic relationships among Festuca pallescens populations as well as between this species and the sympatric F. argentina in North Patagonia. We analysed fourteen populations along a west-east transect of about 500 km in North Patagonia with three types of molecular markers: ITS, chloroplast trnL-F and eight nuclear microsatellites. Bayesian inferences, maximum parsimony and maximum likelihood analyses with trnL-F and ITS showed that F. pallescens is related to the Patagonian clade within the Festuca phylogeny. However, the easternmost populations of F. pallescens at Somuncura plateau were highly differentiated from the other populations and clustered with F. argentina (a sympatric species of the Asian-American clade). Principal coordinates analyses and Bayesian clustering performed with nuclear microsatellites as well as morphoanatomical traits, showed an intermediate position of one of these easternmost populations with respect to the two species, suggesting admixture. The high genetic variability observed in these peripheral populations highlight their relevance for conservation and might be indicating the existence of evolutionary processes triggering events of speciation in the Patagonian fescues.


Festuca pallescens Festuca argentina Patagonian fescues ITS region trnL-F Microsatellites Hybridization Marginal populations 



We are grateful to H. Moraga and C. Fariña for their invaluable help on fieldwork, F. Umaña for helping with the assembly of Fig. 1 using QGIS, and R. Vidal Russel for helpful discussions on the interpretation of phylogenetic analyses. We specially thank Dr. Cecilia Ezcurra for assisting with the morphoanatomical description of the species and revision of the manuscript. We acknowledge the valuable comments of two anonymous reviewers that greatly improved the first version of this manuscript. This project was financed by PN 1126072 (INTA) and PICT-2012-1392 (Agencia Nacional de Promoción Científica y Técnica). AL was supported by a fellowship from CONICET.

Supplementary material

12224_2017_9304_MOESM1_ESM.docx (1.5 mb)
ESM 1 (DOCX 1541 kb)


  1. Aguiar MR, León RJ (1985) Sheep grazing causes important disturbances in western Patagonian semi-arid grasslands. Phytocoenologia 13:181–196CrossRefGoogle Scholar
  2. Andrade A, Monjeau A (2014) Patterns in community assemblage and species richness of small mammals across an altitudinal gradient in semi-arid Patagonia, Argentina. J Arid Environm 106:18–26CrossRefGoogle Scholar
  3. Asner GP, Elmore AJ, Olander LP, Martin RE, Harris AT (2004) Grazing systems, ecosystem responses, and global change. Annual Rev Environm Res 29:261–299CrossRefGoogle Scholar
  4. Bailey CD, Carr TG, Harris SA, Hughes CE (2003) Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Molec Phylogen Evol 29:435–455CrossRefGoogle Scholar
  5. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Molec Biol Evol 16:37–48CrossRefPubMedGoogle Scholar
  6. Bertiller MB (1990) Grazing effects on sustainable semiarid rangeiands in Patagonia: the state and dynamics of the soil seed bank. Environm Managem 20:123–132Google Scholar
  7. Bertiller MB, Defossé GE (1990) Grazing and plant growth interactions in a semiarid Festuca pallescens grassland (Patagonia). J Range Managem 43:300–303CrossRefGoogle Scholar
  8. Bertiller MB, Elissalde NO, Rostagno CM, Defossé GE (1993) Environmental patterns and plant distribution along a precipitation gradient in western Patagonia. J Arid Environm 29:85–97CrossRefGoogle Scholar
  9. Bertiller MB, Irisarri MP, Ares JO (1990) Phenology of Festuca pallescens in Relation to Topography in North-Western Patagonia. J Veg Sci 1:579–584CrossRefGoogle Scholar
  10. Bran D, Ayesa J, López C (2000) Regiones ecológicas de Río Negro. Comunicación Técnica No 59 EEA INTA San Carlos de Bariloche – Río Negro, ArgentinaGoogle Scholar
  11. Breitman MF, Martinez RJN, Avila LJ, Sites JW, Morando M (2015) Phylogeography and morphological variation of the northernmost distributed species of the Liolaemus lineomaculatus section (Liolaemini) from Patagonia. Amphibia-Reptilia 36:373–387Google Scholar
  12. Bruvo R, Michiels NK, D’Souza TG, Schulenburg H (2004) A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Molec Ecol 13:2101–2106CrossRefGoogle Scholar
  13. Busso CA, Bonvissuto GL (2009) Soil seed bank in and between vegetation patches in arid Patagonia, Argentina. Environm Exp Bot 67:188–195CrossRefGoogle Scholar
  14. Burkart R, Bárbaro NO, Sánchez RO, Gómez DA (1999) Eco-regiones de la Argentina. Administración de Parques Nacionales, Argentina. 43ppGoogle Scholar
  15. Catalán P, Müller J (2012) Festuca L. In Zuloaga FO, Rugolo ZE, Anton AMR (eds) Flora de Argentina, vol 3, (II). CONICET, Buenos Aires, Argentina, pp 219–250Google Scholar
  16. Catalán P, Torrecilla P, Lopez-Rodriguez JA, Muller J, Stace CA (2007) A systematic approach to subtribe Loliinae (Poaceae:Pooideae) based on phylogenetic evidence. Aliso: J Syst Evol Bot23:380–405CrossRefGoogle Scholar
  17. Catalán P, Torrecilla P, Rodríguez JÁL, Olmstead RG (2004) Phylogeny of the festucoid grasses of subtribe Loliinae and allies (Poeae, Pooideae) inferred from ITS and trnL–F sequences. Molec Phylogenet Evol 31:517–541CrossRefPubMedGoogle Scholar
  18. Cei, J. M. (1969) The patagonian telmatobiid fauna of the volcanic Somuncura Plateau of Argentina. J Herpetol 3:1–18.CrossRefGoogle Scholar
  19. Cei JM, Scolaro JA (1981) A new northern subspecies of Liolaemus kingi in Argentina. J Herpetol 15:207–210CrossRefGoogle Scholar
  20. Chapin III FS (1993) Functional role of growth forms in ecosystem and global processes. Scaling Physiol. Process Leaf Globe 287–312.Google Scholar
  21. Chebez JC (2005) Guia de las reservas Patagonia Norte I, Ed. AlbatrosGoogle Scholar
  22. Clark LV, Jasieniuk M (2011) Polysat: an R package for polyploid microsatellite analysis. Molec Ecol Resources 11:562–566CrossRefGoogle Scholar
  23. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature, Meth 9:772–772CrossRefGoogle Scholar
  24. Davies J, Poulsen L, Schulte-Herbrüggen B, Mackinnon K, Crawhall N, Henwood WD, et al (2012) Conserving Dryland Biodiversity. pp 84Google Scholar
  25. Dixon CJ (2010) OLFinder - a program which disentangles DNA sequences containing heterozygous indels. Molec Ecol Resources 10:335–340CrossRefGoogle Scholar
  26. Doyle J, Doyle J (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  27. Dubcovsky J, Martínez A (1988) Phenetic relationships in the Festuca spp. from Patagonia. Canad J Bot 66:468–478CrossRefGoogle Scholar
  28. Dubcovsky J, Martínez AJ (1991) Chromosome complement and nucleoli in the Festuca pallescens alliance from South America. Canad J Bot 69:2756–2761CrossRefGoogle Scholar
  29. Dubcovsky J, Martínez AJ (1992) Cytotaxonomy of the Festuca spp. from Patagonia. Canad J Bot 70:1134–1140CrossRefGoogle Scholar
  30. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resources 4:359–361CrossRefGoogle Scholar
  31. Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Molec Ecol 17:1170–1188CrossRefGoogle Scholar
  32. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Molec Ecol 14:2611–2620CrossRefGoogle Scholar
  33. Flint RF, Fidalgo F (1964) Glacial geology of the East flank of the Argentine Andes between Latitude 39°10′S. and Latitude 41°20′S. Bull Geol Soc Amer 75:335–352CrossRefGoogle Scholar
  34. Fu YB, Qiu J, Peterson GW, Willms WD, Wilmshurst JF (2006) Characterization of microsatellite markers for rough fescue species (Festuca spp.). Molec Ecol Notes 6:894–896CrossRefGoogle Scholar
  35. Gaitán JJ, López CR, Bran DE (2010) Vegetation composition and its relationship with the environment in mallines of north Patagonia, Argentina. Wetlands Ecol Managem 19:121–130CrossRefGoogle Scholar
  36. Golluscio RA, Deregibus VA, Paruelo JM (1998) Sustainability and range management in the Patagonian steppes. Ecol Austral 8:265–284Google Scholar
  37. Gonzalo-Turpin H, Hazard L (2009) Local adaptation occurs along altitudinal gradient despite the existence of gene flow in the alpine plant species Festuca eskia. J Ecol 97:742–751CrossRefGoogle Scholar
  38. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefPubMedGoogle Scholar
  39. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  40. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series. pp 95–98Google Scholar
  41. Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276CrossRefGoogle Scholar
  42. Hijmans RJ, Cameron SE, Parra JL, Jones PG and Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  43. Hoffmann AA, Blows MW (1994) Species borders: ecological and evolutionary perspectives. Trends Ecol Evol 9:223–227CrossRefPubMedGoogle Scholar
  44. Hoffmann AA, Hercus MJ (2000) Environmental stress as an evolutionary force. BioScience 50:217CrossRefGoogle Scholar
  45. Inda LA, Sanmartín I, Buerki S, Catalán P (2014) Mediterranean origin and Miocene-Holocene Old World diversification of meadow fescues and ryegrasses (Festuca subgenus Schedonorus and Lolium). J Biogeogr 41:600–614CrossRefGoogle Scholar
  46. Inda LA, Segarra-Moragues JG, Müller J, Peterson PM, Catalán P (2008) Dated historical biogeography of the temperate Loliinae (Poaceae, Pooideae) grasses in the northern and southern hemispheres. Molec Phylogen Evol 46:932–957CrossRefGoogle Scholar
  47. Jensen LB, Holm PB, Lübberstedt T (2007) Cross-species amplification of 105 Lolium perenne SSR loci in 23 species within the Poaceae. Molec Ecol Notes 7:1155–1161CrossRefGoogle Scholar
  48. Johansen-Morris AD, Latta RG (2008) Genotype by environment interactions for fitness in hybrid genotypes of Avena barbata. Evol. Int J Organic Evol 62:573–585CrossRefGoogle Scholar
  49. Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Molec Ecol Resources 15:1179–1191CrossRefGoogle Scholar
  50. Kruckeberg AR, Rabinowitz D (1985) Biological aspects of endemism in higher plants. Annual Rev Ecol Syst 16:447–479CrossRefGoogle Scholar
  51. Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30:3276–3278CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lauvergeat V, Barre P, Bonnet M, Ghesquiere M (2005) Sixty simple sequence repeat markers for use in the FestucaLolium complex of grasses. Molec Ecol Notes 5:401–405CrossRefGoogle Scholar
  53. León RJ, Bran D, Collantes M, Paruelo JM, Soriano A (1998) Grandes unidades de vegetación de la Patagonia extra andina. Ecol Austral 8:125–144Google Scholar
  54. Liao D (1999) Concerted evolution: molecular mechanism and biological implications. Amer J Human Genet 64:24–30CrossRefGoogle Scholar
  55. López A, Siffredi GL, Becker G, López DR, Marchelli P (2015) Assessing genetic diversity in Festuca pallescens along a rainfall gradient in Nord Patagonia. In 5th International Congress of Forage Breeding. October 2015. Buenos Aires, Argentina.Google Scholar
  56. Maestre FT, Salguero-Gómez R, Quero JL (2012) It is getting hotter in here: determining and projecting the impacts of global environmental change on drylands. Philos Trans, Ser B 367:3062–3075CrossRefGoogle Scholar
  57. Malumián N, Náñez C (2011) The Late Cretaceous-Cenozoic transgressions in Patagonia and the Fuegian Andes: foraminifera, palaeoecology, and palaeogeography. Biol J Linn Soc 103:269–288CrossRefGoogle Scholar
  58. Martínez-Palacios A, Eguiarte LE, Furnier GR (1999) Genetic diversity of the endangered endemic Agave victoriae-reginae (Agavaceae) in the Chihuahuan Desert. Amer J Bot 86:1093–1098CrossRefGoogle Scholar
  59. Millennium Ecosystem Assessment Panel (2005) Ecosystems and human well-being. Washington DCGoogle Scholar
  60. Minaya M, Hackel J, Namaganda M, Brochmann C, Vorontsova MS, Besnard G, Catalán P (2017) Contrasting dispersal histories of broad- and fine-leaved temperate Loliinae grasses: range expansion, founder events, and the roles of distance and barriers J Biogeogr 4:1980–1993CrossRefGoogle Scholar
  61. Muzón J, Spinelli GR, Pessacq P, Von Ellenrieder N, Estevez AL, Marino PI, Pérez Goodwyn PJ, Angrisano EB, Díaz F, Fernández LA (2005) Insectos acuáticos de la meseta del Somuncurá, Patagonia, Argentina. Inventario preliminar. Rev Soc Entomol Argent 64:47–68Google Scholar
  62. Nicora, E G (1978) Gramineae In Correa MN (ed.) Flora patagónica 3. Colección Científica del INTA, Instituto Nacional de Tecnología Agropecuaria. ed. Buenos Aires, ArgentinaGoogle Scholar
  63. Oliva G, Martínez A, Collantes M, Dubcovsky J (1993) Phenotypic plasticity and contrasting habitat colonization in Festuca pallescens. Canad J Bot 71:970–977CrossRefGoogle Scholar
  64. Palazzesi L, Barreda VD, Cuitiño JI, Guler MV, Tellería MC, Ventura Santos R (2014) Fossil pollen records indicate that Patagonian desertification was not solely a consequence of Andean uplift. Nature, Commun 5Google Scholar
  65. Paradis E, Claude J, Strimmer K (2004) APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290CrossRefPubMedGoogle Scholar
  66. Parodi, L.R. 1953. Las especies de Festuca de la Patagonia. Revista Argent Agron 20:177–229Google Scholar
  67. Paruelo J, Bertiller M, Schlichter T, Coronato F (1993) Secuencias de deterioro en distintos ambientes patagónicos: Su caracterización mediante el modelo de estados y transiciones. San Carlos de Bariloche: INTA-GTZ Proyecto LUDEPA-SMEGoogle Scholar
  68. Pastorino MJ, Gallo LA (2002) Quaternary evolutionary history of Austrocedrus chilensis, a cypress native to the Andean-Patagonian forest. J Biogeogr 29:1167–1178CrossRefGoogle Scholar
  69. Polzin T, Daneschmand SV (2003) On Steiner trees and minimum spanning trees in hypergraphs. Operat Res Lett 31:12–20CrossRefGoogle Scholar
  70. Porras-Hurtado L, Ruiz Y, Santos C, Phillips C, Carracedo A, Lareu M (2013) An overview of STRUCTURE: applications, parameter settings, and supporting software. Frontiers in Genetics, 4(98). doi: 10.3389/fgene.2013.00098
  71. Posada D (2008) jModelTest: Phylogenetic Model Averaging. Molec Biol Evol 25:1253–1256CrossRefPubMedGoogle Scholar
  72. Premoli AC, Mathiasen P, Acosta MC, Ramos VA (2012) Phylogeographically concordant chloroplast DNA divergence in sympatric Nothofagus s.s. How deep can it be? New Phytol 193:261–275CrossRefPubMedGoogle Scholar
  73. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics, 155: 945-959Google Scholar
  74. Quarín CL, Caponio I (1995) Cytogenetics and reproduction of Paspalum dasypleurum and its hybrids with P. urvillei and P. dilatatum ssp. flavescens. Int J Pl Sci 156:232–235CrossRefGoogle Scholar
  75. Rabassa J (2008) Late Cenozoic Glaciations in Patagonia and Tierra del Fuego. In J. Rabassa (Ed.), Developments in Quaternary Sciences, 11: 151-204Google Scholar
  76. Rabassa J, Coronato A, Martinez O (2011) Late Cenozoic glaciations in Patagonia and Tierra del Fuego: an updated review. Biol J Linn Soc 103:316–335CrossRefGoogle Scholar
  77. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at Google Scholar
  78. Reynolds JF, Smith DMS, Lambin EF, Turner BL, Mortimore M, Batterbury SPJ, et al. (2007) Global desertification: building a science for dryland development. Science 316:847–851CrossRefPubMedGoogle Scholar
  79. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefPubMedPubMedCentralGoogle Scholar
  80. Sala OE, Stuart Chapin F, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson R B, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff N, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global Biodiversity Scenarios for the Year 2100. Science, 287 (5459): 1770-1774. doi: 10.1126/science.287.5459.1770
  81. Seehausen O (2004) Hybridization and adaptive radiation. Trends Ecol Evol 19:198–207CrossRefPubMedGoogle Scholar
  82. Simpson GG (1953) The major features of evolution. New York: Columbia Univ. PressGoogle Scholar
  83. Straud JT and Losos JB (2016) Ecological opportunity and adaptive radiation. Annual Rev Ecol Evol Syst 47:507–32CrossRefGoogle Scholar
  84. Stucky BJ (2012) SeqTrace: a graphical tool for rapidly processing DNA sequencing chromatograms. J Biomolec Technol 23:90–93CrossRefGoogle Scholar
  85. Swofford DL (2003) PAUP. Phylogenetic analysis using parsimony (and other methods). Version 4. Sinauer AssociatesGoogle Scholar
  86. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl Molec Biol 17:1105–1109CrossRefGoogle Scholar
  87. Thomas H, Humphreys MO (1991) Progress and potential of interspecific hybrids of Lolium and Festuca. J Agric Sci 117:1–8CrossRefGoogle Scholar
  88. Thompson JD, Gaudeul M, Debussche M (2010) Conservation value of sites of hybridization in peripheral populations of rare plant species. Conservation Biol 24:236–245CrossRefGoogle Scholar
  89. Torrecilla P, Catalán P (2002) Phylogeny of broad-leaved and fine-leaved Festuca lineages (Poaceae) based on nuclear ITS sequences. Syst Bot 27:241–251Google Scholar
  90. Torrecilla P, Rodríguez JAL, Stančík D, Catalán P (2003) Systematics of Festuca. Pl Syst Evol 239:113–139CrossRefGoogle Scholar
  91. Zárate MA, Tripaldi A (2012) The aeolian system of central Argentina. Aeolian Res 3:401–417CrossRefGoogle Scholar
  92. Wright S, Keeling J, Gillman L (2006) The road from Santa Rosalia: a faster tempo of evolution in tropical climates Proc Natl Acad Sci USA 103:7718–7722Google Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2017

Authors and Affiliations

  1. 1.INTA, EEA Bariloche, Instituto Nacional de Tecnología Agropecuaria, Estación Experimental BarilocheBarilocheArgentina
  2. 2.CONICET, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
  3. 3.INTA, EF Villa Dolores, Instituto Nacional de Tecnología Agropecuaria, Estación Forestal Villa DoloresCórdobaArgentina

Personalised recommendations