The role of abiotic and biotic factors in functional structure and processes of alpine subshrub communities

Abstract

Species occurrence is subjected to the particular ecological constraints of each site where species that can become dominant exert strong influence on community structure and functioning. Given the harsh environmental conditions in alpine areas and the low number of woody species able to support them, we wanted to study the effect of the main abiotic (environmental conditions related to topographical situation and bedrock type) and biotic (functional type of the dominant species) factors on functional structure and processes of alpine subshrub communities. In 24 study sites, we collected aboveground biomass and raw litter. Biomass was sorted into functional groups (shrubs, graminoids, forbs, bryophytes, lichens), which, in turn, were separated into photosynthetic and structural compartments. We characterized community structure in terms of biomass allocation of functional groups, estimated leaf primary production and litter persistence, and performed analyses of variance for each of the factors considered. Our results showed that community structure is driven mainly by the functional type of the dominant species, although abiotic factors are also relevant. Production depends on abiotic conditions. It is constrained by low temperatures in northern exposures and by low water availability in permeable bedrock types. Litter decomposition depends on environmental conditions and the dominant species characteristics. It is limited by dry conditions in southern slopes and by the thick and N-poor leaves of evergreen subshrubs. In summary, the few alpine woody species able to build specific communities in the Pyrenees grow in particular topographical situations, where they become crucial drivers of ecosystem structure and functioning.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aerts R (2006) The freezer defrosting: global warming and litter decomposition rates in cold biomes. J Ecol 94:713–724

    Article  Google Scholar 

  2. Améztegui A, Coll L (2013) Unraveling the role of light and biotic interactions on seedling performance of four Pyrenean species along environmental gradients. Forest Ecol Managem 303:25–34

    Article  Google Scholar 

  3. Anadon-Rosell A, Rixen C, Cherubini P, Wipf S, Hagedorn F, Dawes MA (2014) Growth and phenology of three dwarf shrub species in a six-year soil warming experiment at the alpine treeline. PLOS ONE 9:e100577

    Article  PubMed  PubMed Central  Google Scholar 

  4. Anthelme F, Villaret J-C, Brun J-J (2007) Shrub encroachment in the Alps gives rise to the convergence of sub-alpine communities on a regional scale. J Veg Sci 18:355–362

    Article  Google Scholar 

  5. Arnesen G, Beck PSA, Engelskjøn T (2007) Soil acidity, content of carbonates, and available phosphorus are the soil factors best correlated with alpine vegetation: evidence from Troms, North Norway. Arctic Antarc Alpine Res 39:189–199

    Article  Google Scholar 

  6. Badía D, García-González R, Martí C (2002) Clasificación de suelos en pastos alpinos de Aísa y Ordesa (Pirineo central). Edafología 9:11–22

    Google Scholar 

  7. Baptist F, Yoccoz NG, Choler P (2010) Direct and indirect control by snow cover over decomposition in alpine tundra along a snowmelt gradient. Pl & Soil 328:397–410

    CAS  Article  Google Scholar 

  8. Bär A, Pape R, Bräuning A, Löffler J (2008) Growth-ring variations of dwarf shrubs reflect regional climate signals in alpine environments rather than topoclimatic differences. J Biogeogr 35:625–636

    Article  Google Scholar 

  9. Berdanier AB, Klein JA (2011) Growing season length and soil moisture interactively constrain high elevation aboveground net primary production. Ecosystems 14:963–974

    Article  Google Scholar 

  10. Bolòs O, Vigo J, Masalles RM, Ninot JM (2005) Flora Manual dels Països Catalans, 2nd edn. Pòrtic, Barcelona

    Google Scholar 

  11. Bowman WD, Theodose TA, Schardt JC, Conant RT (1993) Constraints of nutrient availability on primary production in two alpine tundra communities. Ecology 74:2085–2097

    Article  Google Scholar 

  12. Brandt JS, Haynes MA, Kuemmerle T, Waller DM, Radeloff VC (2013) Regime shift on the roof of the world: Alpine meadows converting to shrublands in the southern Himalayas. Biol Conservation 158:116–127

    Article  Google Scholar 

  13. Bråthen KA, Ravolainen VT (2015) Niche construction by growth forms is as strong a predictor of species diversity as environmental gradients. J Ecol 103:701–713

    Article  Google Scholar 

  14. Braun-Blanquet J (1948) La végétation alpine des Pyrénées orientales. Monografía de la Estación de Estudios Pirenaicos y del Instituto Español de Edafología, Ecología y Fisiología Vegetal, Barcelona

    Google Scholar 

  15. Brodribb TJ, Pittermann J, Coomes D a. (2012) Elegance versus speed: examining the competition between conifer and angiosperm trees. Int J Pl Sci 173:673–694

    Article  Google Scholar 

  16. Brooks PD, Williams MW (1999) Snowpack controls on nitrogen cycling and export in seasonally snow-covered catchments. Hydrol Processes 13:2177–2190

    Article  Google Scholar 

  17. Brooks PD, Williams MW, Schmidt SK (1996) Microbial activity under alpine snowpacks, Niwot Ridge, Colorado. Biogeochemistry 32:93–113

    Article  Google Scholar 

  18. Carreras J, Vendrell P (2012) Cartografia dels hàbitats a Catalunya 1:50.000. Available at http://www20.gencat/portal/site/mediambient

    Google Scholar 

  19. Carreras J, Carrillo E, Ferré A, Ninot JM (2012) Mapa digital dels hàbitats d’Andorra 1:25.000. Available at http://www.sigma.ad

    Google Scholar 

  20. Carrillo E, Ninot JM (1992) Flora i vegetació de les valls d’Espot i Boí. Institut d’Estudis Catalans, Barcelona

    Google Scholar 

  21. Choler P (2005) Consistent shifts in alpine plant traits along a mesotopographical gradient. Arctic Antarc Alpine Res 37:444–453

    Article  Google Scholar 

  22. Cornelissen JHC, Pérez-Harguindeguy N, Díaz S, Grime JP, Marzano B, Cabido M, Vendramini F, Cerabolini B (1999) Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol 143:191–200

    Article  Google Scholar 

  23. Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan T V, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti M V, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Letters 11:1065–1071

    Article  Google Scholar 

  24. de Bello F, Lavorel S, Lavergne S, Albert CH, Boulangeat I, Mazel F, Thuiller W (2013) Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecography 36:393–402

    Article  Google Scholar 

  25. Díaz S, Cabido M, Casanoves F (1998) Plant functional traits and environmental filters at a regional scale. J Veg Sci 9:113–122

    Article  Google Scholar 

  26. Diekmann M (2003) Species indicator values as an important tool in applied plant ecology – a review. Basic Appl Ecol 4:493–506

    Article  Google Scholar 

  27. Dirnböck T, Dullinger S, Grabherr G (2003) A regional impact assessment of climate and land-use change on alpine vegetation. J Biogeogr 30:401–417

    Article  Google Scholar 

  28. Epstein HE, Walker D A., Raynolds MK, Jia GJ, Kelley AM (2008) Phytomass patterns across a temperature gradient of the North American arctic tundra. J Geophys Res 113:G03S02

    Article  Google Scholar 

  29. Field CB, Behrenfeld MJ, Randerson JR, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    CAS  Article  PubMed  Google Scholar 

  30. Fisk MC, Schmidt SK, Seastedt TR (1998) Topographic patterns of above- and belowground production and nitrogen cycling in alpine tundra. Ecology 79:2253–2266

    Article  Google Scholar 

  31. Garcia-Pausas J, Casals P, Camarero L, Huguet C, Sebastià MT, Thompson R, Romanyà J (2007) Soil organic carbon storage in mountain grasslands of the Pyrenees: effects of climate and topography. Biogeochemistry 82:279–289

    CAS  Article  Google Scholar 

  32. Garnier E, Shipley B, Roumet C, Laurent G (2001) A standardized protocol for the determination of specific leaf area and leaf dry matter content. Funct Ecol 15:688–695

    Article  Google Scholar 

  33. Givnish TJ (2002) Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fenn 36:703–743

    Article  Google Scholar 

  34. Gómez D, Sesé JA, Villar L (2003) The vegetation of the alpine zone in the Pyrenees. In Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine Biodiversity in Europe. Springer, Berlin Heidelberg, pp 85–92

    Google Scholar 

  35. Gracia M, Montané F, Piqué J, Retana J (2007) Overstory structure and topographic gradients determining diversity and abundance of understory shrub species in temperate forests in central Pyrenees (NE Spain). Forest Ecol Managem 242:391–397

    Article  Google Scholar 

  36. Grau O, Ninot JM, Ferré A, Font X, Grytnes J-A (2012) Altitudinal species richness patterns of vascular plants in the south-eastern Pyrenees and nearby mountains of Catalonia. Pl Ecol Diversity 5:115–126

    Article  Google Scholar 

  37. Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910

    Article  Google Scholar 

  38. Grüber M (1978) La végétation des Pyrénées ariègeoises et catalanes occidentales. Université Aix-Marseille III

  39. Gutiérrez-Girón A, Gavilán R (2013) Plant functional strategies and environmental constraints in Mediterranean high mountain grasslands in central Spain. Pl Ecol Diversity 6:435–446

    Article  Google Scholar 

  40. Hobbie SE, Gough L (2002) Foliar and soil nutrients in tundra on glacial landscapes of contrasting ages in northern Alaska. Oecologia 131:453–462

    Article  PubMed  Google Scholar 

  41. Hobbie SE, Miley TA, Weiss MS (2002) Carbon and nitrogen cycling in soils from acidic and nonacidic tundra with different glacial histories in Northern Alaska. Ecosystems 5:761–774

    CAS  Article  Google Scholar 

  42. Isard SA (1986) Factors influencing soil moisture and plant community distribution on Niwot Ridge, Front Range, Colorado, U.S.A. Arctic Alpine Res 18:83–96

    Article  Google Scholar 

  43. Julve P (2015) Baseflor. Index botanique, écologique et chorologique de la flore de France. Available at http://perso.wanadoo.fr/philippe.julve/catminat.htm. Accessed 1 Jan 2015

  44. Karlsson PS (1992) Leaf longevity in evergreen shrubs: variation within and among European species. Oecologia 91:346–349

    CAS  Article  PubMed  Google Scholar 

  45. Kikvidze Z, Pugnaire FI, Brooker RW, Choler P, Lortie CJ, Michalet R, Callaway RM (2005) Linking patterns and processes in alpine plant communities: a global study. Ecology 86:1395–1400

    Article  Google Scholar 

  46. King GM, Gugerli F, Fonti P, Frank DC (2013) Tree growth response along an elevational gradient: climate or genetics? Oecologia 173:1587–1600

    Article  PubMed  Google Scholar 

  47. Klanderud K, Totland Ø (2005) Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hotspot. Ecology 86:2047–2054

    Article  Google Scholar 

  48. Klanderud K, Vandvik V, Goldberg D (2015) The importance of biotic vs. abiotic drivers of local plant community composition along regional bioclimatic gradients. PLOS ONE 10:1–14

    Article  Google Scholar 

  49. Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd edn. Springer, Berlin

    Google Scholar 

  50. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556

    Article  Google Scholar 

  51. Michalet R, Gandoy C, Joud D, Pàges J-P (2002) Plant community composition and biomass on calcareous and siliceous substrates in the northern French Alps: comparative effects of soil chemistry and water status. Arctic Antarc Alpine Res 34:102–113

    Article  Google Scholar 

  52. Molau U (1997) Responses to natural climatic variation and experimental warming in two tundra plant species with contrasting life forms: Cassiope tetragona and Ranunculus nivalis. Global Change Biol 3:97–107

    Article  Google Scholar 

  53. Montané F, Rovira P, Casals P (2007) Shrub encroachment into mesic mountain grasslands in the Iberian peninsula: Effects of plant quality and temperature on soil C and N stocks. Global Biogeochem Cycles 21:GB4016

    Article  Google Scholar 

  54. Neuner G, Ambach D, Buchner O (1999) Readiness to frost harden during the dehardening period measured in situ in leaves of Rhododendron ferrugineum L. at the alpine timberline. Flora, Morphol Distrib Funct Ecol Pl 194:289–296

    Google Scholar 

  55. Ninot JM, Carrillo E, Font X, Carreras J, Ferré A, Masalles RM, Soriano I, Vigo J (2007) Altitude zonation in the Pyrenees. A geobotanic interpretation. Phytocoenologia 37:371–398

    Article  Google Scholar 

  56. Ninot JM, Anadon-Rosell A, Carrillo E, Grau O, Lloret F, Nogués S, Talavera M (2007) Los arbustos de alta montaña y los cambios de paisaje en el Parque Nacional de Aigüestortes i Estany de Sant Maurici. In Proyectos de investigación en parques nacionales 2012–2015. Organismo Autónomo Parques Nacionales, Madrid

  57. Ninot JM, Ferré A, Grau O, Font X, Carrillo E, Pérez-Haase A (2013) Environmental drivers and plant species diversity in the Catalan and Andorran Pyrenees. Lazaroa 34:89–105

    Article  Google Scholar 

  58. Onipchenko VG, Semenova G V, Van der Maarel E (1998) Population strategies in severe environments: alpine plants in the northwestern Caucasus. J Veg Sci 9:27–40

    Article  Google Scholar 

  59. Opedal ØH, Armbruster WS, Graae BJ (2015) Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape. Pl Ecol Diversity 8:305–315

    Article  Google Scholar 

  60. Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti M V., Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardized measurment of plant functional traits worldwide. Austral J Bot 61:167–234

    Article  Google Scholar 

  61. Pornon A, Lamaze T (2007) Nitrogen resorption and photosynthetic activity over leaf life span in an evergreen shrub, Rhododendron ferrugineum, in a subalpine environment. New Phytol 175:301–310

    CAS  Article  PubMed  Google Scholar 

  62. Saccone P, Morin S, Baptist F, Bonneville J-M, Colace M-P, Domine F, Faure M, Geremia R, Lochet J, Poly F, Lavorel S, Clément J-C (2013) The effects of snowpack properties and plant strategies on litter decomposition during winter in subalpine meadows. Pl Soil 363:215–229

    CAS  Article  Google Scholar 

  63. Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38:406–416

    Article  Google Scholar 

  64. Sebastià MT (2004) Role of topography and soils in grassland structuring at the landscape and community scales. Basic Appl Ecol 5:331–346

    Article  Google Scholar 

  65. Shaver GR, Chapin III FS (1991) Production: Biomass relationships and element cycling in contrasting arctic vegetation types. Ecol Monogr 61:1–23

    Article  Google Scholar 

  66. Walker MD, Webber PJ, Arnold EH, Ebert-May D (1994) Effects of interannual climate variation on aboveground phytomass in alpine vegetation. Ecology 75:393–408

    Article  Google Scholar 

  67. Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Pl Ecol 1:85–93

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to colleagues and students, particularly to Quim Canelles and Albert Petit, for their help in the field and laboratory tasks, and to Albert Ferré for providing data from the habitat cartographies. This study was partly supported by the Spanish Ministry of the Environment via the projects 69/2005 and 634S/2012. Samplings procedures performed comply with the current laws of Andorra and Spain.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Estela Illa.

Electronic supplementary material

ESM 1

(DOC 4258 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Illa, E., Ninot, J.M., Anadon-Rosell, A. et al. The role of abiotic and biotic factors in functional structure and processes of alpine subshrub communities. Folia Geobot 52, 199–215 (2017). https://doi.org/10.1007/s12224-017-9296-x

Download citation

Keywords

  • Plant functional type
  • Topographical situation
  • Bedrock
  • Primary production
  • Litter persistence
  • Pyrenees