Folia Geobotanica

, Volume 52, Issue 2, pp 199–215 | Cite as

The role of abiotic and biotic factors in functional structure and processes of alpine subshrub communities

  • Estela IllaEmail author
  • Josep M. Ninot
  • Alba Anadon-Rosell
  • Francesc Oliva


Species occurrence is subjected to the particular ecological constraints of each site where species that can become dominant exert strong influence on community structure and functioning. Given the harsh environmental conditions in alpine areas and the low number of woody species able to support them, we wanted to study the effect of the main abiotic (environmental conditions related to topographical situation and bedrock type) and biotic (functional type of the dominant species) factors on functional structure and processes of alpine subshrub communities. In 24 study sites, we collected aboveground biomass and raw litter. Biomass was sorted into functional groups (shrubs, graminoids, forbs, bryophytes, lichens), which, in turn, were separated into photosynthetic and structural compartments. We characterized community structure in terms of biomass allocation of functional groups, estimated leaf primary production and litter persistence, and performed analyses of variance for each of the factors considered. Our results showed that community structure is driven mainly by the functional type of the dominant species, although abiotic factors are also relevant. Production depends on abiotic conditions. It is constrained by low temperatures in northern exposures and by low water availability in permeable bedrock types. Litter decomposition depends on environmental conditions and the dominant species characteristics. It is limited by dry conditions in southern slopes and by the thick and N-poor leaves of evergreen subshrubs. In summary, the few alpine woody species able to build specific communities in the Pyrenees grow in particular topographical situations, where they become crucial drivers of ecosystem structure and functioning.


Plant functional type Topographical situation Bedrock Primary production Litter persistence Pyrenees 



We are grateful to colleagues and students, particularly to Quim Canelles and Albert Petit, for their help in the field and laboratory tasks, and to Albert Ferré for providing data from the habitat cartographies. This study was partly supported by the Spanish Ministry of the Environment via the projects 69/2005 and 634S/2012. Samplings procedures performed comply with the current laws of Andorra and Spain.

Supplementary material

12224_2017_9296_MOESM1_ESM.doc (4.2 mb)
ESM 1 (DOC 4258 kb)


  1. Aerts R (2006) The freezer defrosting: global warming and litter decomposition rates in cold biomes. J Ecol 94:713–724CrossRefGoogle Scholar
  2. Améztegui A, Coll L (2013) Unraveling the role of light and biotic interactions on seedling performance of four Pyrenean species along environmental gradients. Forest Ecol Managem 303:25–34CrossRefGoogle Scholar
  3. Anadon-Rosell A, Rixen C, Cherubini P, Wipf S, Hagedorn F, Dawes MA (2014) Growth and phenology of three dwarf shrub species in a six-year soil warming experiment at the alpine treeline. PLOS ONE 9:e100577CrossRefPubMedPubMedCentralGoogle Scholar
  4. Anthelme F, Villaret J-C, Brun J-J (2007) Shrub encroachment in the Alps gives rise to the convergence of sub-alpine communities on a regional scale. J Veg Sci 18:355–362CrossRefGoogle Scholar
  5. Arnesen G, Beck PSA, Engelskjøn T (2007) Soil acidity, content of carbonates, and available phosphorus are the soil factors best correlated with alpine vegetation: evidence from Troms, North Norway. Arctic Antarc Alpine Res 39:189–199CrossRefGoogle Scholar
  6. Badía D, García-González R, Martí C (2002) Clasificación de suelos en pastos alpinos de Aísa y Ordesa (Pirineo central). Edafología 9:11–22Google Scholar
  7. Baptist F, Yoccoz NG, Choler P (2010) Direct and indirect control by snow cover over decomposition in alpine tundra along a snowmelt gradient. Pl & Soil 328:397–410CrossRefGoogle Scholar
  8. Bär A, Pape R, Bräuning A, Löffler J (2008) Growth-ring variations of dwarf shrubs reflect regional climate signals in alpine environments rather than topoclimatic differences. J Biogeogr 35:625–636CrossRefGoogle Scholar
  9. Berdanier AB, Klein JA (2011) Growing season length and soil moisture interactively constrain high elevation aboveground net primary production. Ecosystems 14:963–974CrossRefGoogle Scholar
  10. Bolòs O, Vigo J, Masalles RM, Ninot JM (2005) Flora Manual dels Països Catalans, 2nd edn. Pòrtic, BarcelonaGoogle Scholar
  11. Bowman WD, Theodose TA, Schardt JC, Conant RT (1993) Constraints of nutrient availability on primary production in two alpine tundra communities. Ecology 74:2085–2097CrossRefGoogle Scholar
  12. Brandt JS, Haynes MA, Kuemmerle T, Waller DM, Radeloff VC (2013) Regime shift on the roof of the world: Alpine meadows converting to shrublands in the southern Himalayas. Biol Conservation 158:116–127CrossRefGoogle Scholar
  13. Bråthen KA, Ravolainen VT (2015) Niche construction by growth forms is as strong a predictor of species diversity as environmental gradients. J Ecol 103:701–713CrossRefGoogle Scholar
  14. Braun-Blanquet J (1948) La végétation alpine des Pyrénées orientales. Monografía de la Estación de Estudios Pirenaicos y del Instituto Español de Edafología, Ecología y Fisiología Vegetal, BarcelonaGoogle Scholar
  15. Brodribb TJ, Pittermann J, Coomes D a. (2012) Elegance versus speed: examining the competition between conifer and angiosperm trees. Int J Pl Sci 173:673–694CrossRefGoogle Scholar
  16. Brooks PD, Williams MW (1999) Snowpack controls on nitrogen cycling and export in seasonally snow-covered catchments. Hydrol Processes 13:2177–2190CrossRefGoogle Scholar
  17. Brooks PD, Williams MW, Schmidt SK (1996) Microbial activity under alpine snowpacks, Niwot Ridge, Colorado. Biogeochemistry 32:93–113CrossRefGoogle Scholar
  18. Carreras J, Vendrell P (2012) Cartografia dels hàbitats a Catalunya 1:50.000. Available at http://www20.gencat/portal/site/mediambient Google Scholar
  19. Carreras J, Carrillo E, Ferré A, Ninot JM (2012) Mapa digital dels hàbitats d’Andorra 1:25.000. Available at Google Scholar
  20. Carrillo E, Ninot JM (1992) Flora i vegetació de les valls d’Espot i Boí. Institut d’Estudis Catalans, BarcelonaGoogle Scholar
  21. Choler P (2005) Consistent shifts in alpine plant traits along a mesotopographical gradient. Arctic Antarc Alpine Res 37:444–453CrossRefGoogle Scholar
  22. Cornelissen JHC, Pérez-Harguindeguy N, Díaz S, Grime JP, Marzano B, Cabido M, Vendramini F, Cerabolini B (1999) Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol 143:191–200CrossRefGoogle Scholar
  23. Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan T V, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti M V, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Letters 11:1065–1071CrossRefGoogle Scholar
  24. de Bello F, Lavorel S, Lavergne S, Albert CH, Boulangeat I, Mazel F, Thuiller W (2013) Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecography 36:393–402CrossRefGoogle Scholar
  25. Díaz S, Cabido M, Casanoves F (1998) Plant functional traits and environmental filters at a regional scale. J Veg Sci 9:113–122CrossRefGoogle Scholar
  26. Diekmann M (2003) Species indicator values as an important tool in applied plant ecology – a review. Basic Appl Ecol 4:493–506CrossRefGoogle Scholar
  27. Dirnböck T, Dullinger S, Grabherr G (2003) A regional impact assessment of climate and land-use change on alpine vegetation. J Biogeogr 30:401–417CrossRefGoogle Scholar
  28. Epstein HE, Walker D A., Raynolds MK, Jia GJ, Kelley AM (2008) Phytomass patterns across a temperature gradient of the North American arctic tundra. J Geophys Res 113:G03S02CrossRefGoogle Scholar
  29. Field CB, Behrenfeld MJ, Randerson JR, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240CrossRefPubMedGoogle Scholar
  30. Fisk MC, Schmidt SK, Seastedt TR (1998) Topographic patterns of above- and belowground production and nitrogen cycling in alpine tundra. Ecology 79:2253–2266CrossRefGoogle Scholar
  31. Garcia-Pausas J, Casals P, Camarero L, Huguet C, Sebastià MT, Thompson R, Romanyà J (2007) Soil organic carbon storage in mountain grasslands of the Pyrenees: effects of climate and topography. Biogeochemistry 82:279–289CrossRefGoogle Scholar
  32. Garnier E, Shipley B, Roumet C, Laurent G (2001) A standardized protocol for the determination of specific leaf area and leaf dry matter content. Funct Ecol 15:688–695CrossRefGoogle Scholar
  33. Givnish TJ (2002) Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fenn 36:703–743CrossRefGoogle Scholar
  34. Gómez D, Sesé JA, Villar L (2003) The vegetation of the alpine zone in the Pyrenees. In Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine Biodiversity in Europe. Springer, Berlin Heidelberg, pp 85–92Google Scholar
  35. Gracia M, Montané F, Piqué J, Retana J (2007) Overstory structure and topographic gradients determining diversity and abundance of understory shrub species in temperate forests in central Pyrenees (NE Spain). Forest Ecol Managem 242:391–397CrossRefGoogle Scholar
  36. Grau O, Ninot JM, Ferré A, Font X, Grytnes J-A (2012) Altitudinal species richness patterns of vascular plants in the south-eastern Pyrenees and nearby mountains of Catalonia. Pl Ecol Diversity 5:115–126CrossRefGoogle Scholar
  37. Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910CrossRefGoogle Scholar
  38. Grüber M (1978) La végétation des Pyrénées ariègeoises et catalanes occidentales. Université Aix-Marseille IIIGoogle Scholar
  39. Gutiérrez-Girón A, Gavilán R (2013) Plant functional strategies and environmental constraints in Mediterranean high mountain grasslands in central Spain. Pl Ecol Diversity 6:435–446CrossRefGoogle Scholar
  40. Hobbie SE, Gough L (2002) Foliar and soil nutrients in tundra on glacial landscapes of contrasting ages in northern Alaska. Oecologia 131:453–462CrossRefPubMedGoogle Scholar
  41. Hobbie SE, Miley TA, Weiss MS (2002) Carbon and nitrogen cycling in soils from acidic and nonacidic tundra with different glacial histories in Northern Alaska. Ecosystems 5:761–774CrossRefGoogle Scholar
  42. Isard SA (1986) Factors influencing soil moisture and plant community distribution on Niwot Ridge, Front Range, Colorado, U.S.A. Arctic Alpine Res 18:83–96CrossRefGoogle Scholar
  43. Julve P (2015) Baseflor. Index botanique, écologique et chorologique de la flore de France. Available at Accessed 1 Jan 2015
  44. Karlsson PS (1992) Leaf longevity in evergreen shrubs: variation within and among European species. Oecologia 91:346–349CrossRefPubMedGoogle Scholar
  45. Kikvidze Z, Pugnaire FI, Brooker RW, Choler P, Lortie CJ, Michalet R, Callaway RM (2005) Linking patterns and processes in alpine plant communities: a global study. Ecology 86:1395–1400CrossRefGoogle Scholar
  46. King GM, Gugerli F, Fonti P, Frank DC (2013) Tree growth response along an elevational gradient: climate or genetics? Oecologia 173:1587–1600CrossRefPubMedGoogle Scholar
  47. Klanderud K, Totland Ø (2005) Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hotspot. Ecology 86:2047–2054CrossRefGoogle Scholar
  48. Klanderud K, Vandvik V, Goldberg D (2015) The importance of biotic vs. abiotic drivers of local plant community composition along regional bioclimatic gradients. PLOS ONE 10:1–14CrossRefGoogle Scholar
  49. Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  50. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556CrossRefGoogle Scholar
  51. Michalet R, Gandoy C, Joud D, Pàges J-P (2002) Plant community composition and biomass on calcareous and siliceous substrates in the northern French Alps: comparative effects of soil chemistry and water status. Arctic Antarc Alpine Res 34:102–113CrossRefGoogle Scholar
  52. Molau U (1997) Responses to natural climatic variation and experimental warming in two tundra plant species with contrasting life forms: Cassiope tetragona and Ranunculus nivalis. Global Change Biol 3:97–107CrossRefGoogle Scholar
  53. Montané F, Rovira P, Casals P (2007) Shrub encroachment into mesic mountain grasslands in the Iberian peninsula: Effects of plant quality and temperature on soil C and N stocks. Global Biogeochem Cycles 21:GB4016CrossRefGoogle Scholar
  54. Neuner G, Ambach D, Buchner O (1999) Readiness to frost harden during the dehardening period measured in situ in leaves of Rhododendron ferrugineum L. at the alpine timberline. Flora, Morphol Distrib Funct Ecol Pl 194:289–296Google Scholar
  55. Ninot JM, Carrillo E, Font X, Carreras J, Ferré A, Masalles RM, Soriano I, Vigo J (2007) Altitude zonation in the Pyrenees. A geobotanic interpretation. Phytocoenologia 37:371–398CrossRefGoogle Scholar
  56. Ninot JM, Anadon-Rosell A, Carrillo E, Grau O, Lloret F, Nogués S, Talavera M (2007) Los arbustos de alta montaña y los cambios de paisaje en el Parque Nacional de Aigüestortes i Estany de Sant Maurici. In Proyectos de investigación en parques nacionales 2012–2015. Organismo Autónomo Parques Nacionales, MadridGoogle Scholar
  57. Ninot JM, Ferré A, Grau O, Font X, Carrillo E, Pérez-Haase A (2013) Environmental drivers and plant species diversity in the Catalan and Andorran Pyrenees. Lazaroa 34:89–105CrossRefGoogle Scholar
  58. Onipchenko VG, Semenova G V, Van der Maarel E (1998) Population strategies in severe environments: alpine plants in the northwestern Caucasus. J Veg Sci 9:27–40CrossRefGoogle Scholar
  59. Opedal ØH, Armbruster WS, Graae BJ (2015) Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape. Pl Ecol Diversity 8:305–315CrossRefGoogle Scholar
  60. Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti M V., Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardized measurment of plant functional traits worldwide. Austral J Bot 61:167–234CrossRefGoogle Scholar
  61. Pornon A, Lamaze T (2007) Nitrogen resorption and photosynthetic activity over leaf life span in an evergreen shrub, Rhododendron ferrugineum, in a subalpine environment. New Phytol 175:301–310CrossRefPubMedGoogle Scholar
  62. Saccone P, Morin S, Baptist F, Bonneville J-M, Colace M-P, Domine F, Faure M, Geremia R, Lochet J, Poly F, Lavorel S, Clément J-C (2013) The effects of snowpack properties and plant strategies on litter decomposition during winter in subalpine meadows. Pl Soil 363:215–229CrossRefGoogle Scholar
  63. Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38:406–416CrossRefGoogle Scholar
  64. Sebastià MT (2004) Role of topography and soils in grassland structuring at the landscape and community scales. Basic Appl Ecol 5:331–346CrossRefGoogle Scholar
  65. Shaver GR, Chapin III FS (1991) Production: Biomass relationships and element cycling in contrasting arctic vegetation types. Ecol Monogr 61:1–23CrossRefGoogle Scholar
  66. Walker MD, Webber PJ, Arnold EH, Ebert-May D (1994) Effects of interannual climate variation on aboveground phytomass in alpine vegetation. Ecology 75:393–408CrossRefGoogle Scholar
  67. Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Pl Ecol 1:85–93CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2017

Authors and Affiliations

  1. 1.Institute for Research on Biodiversity (IRBio) & Department of Evolutionary Biology, Ecology and Environmental SciencesUniversity of BarcelonaBarcelonaSpain
  2. 2.Department of Genetics, Microbiology and StatisticsUniversity of BarcelonaBarcelonaSpain

Personalised recommendations