Advertisement

Folia Geobotanica

, Volume 52, Issue 3–4, pp 269–281 | Cite as

Clonal vs leaf-height-seed (LHS) traits: which are filtered more strongly across habitats?

  • Anna E.-Vojtkó
  • Martin Freitag
  • Alessandro Bricca
  • Felipe Martello
  • Joaquín Moreno Compañ
  • Martin Küttim
  • Róbert Kun
  • Francesco de Bello
  • Jitka Klimešová
  • Lars GötzenbergerEmail author
Article

Abstract

Plant functional traits are now frequently used instead of species identity to identify how plant species co-exist in assemblages. One notion is that species inhabiting the same environment have more characteristics in common than species from different habitats, leading to different prevailing dominant traits along environmental gradients, and also to a lesser diversity of traits in habitats that impose a stronger filter on these traits. Though such patterns have been demonstrated for different environmental drivers and different traits, studies using easily available traits connected to above ground processes (i.e. traits of the leaf-height-seed, or LHS, strategy scheme) are largely overrepresented in these analyses. Here we combined data on clonal and bud bank traits, representing the ability to reproduce and spread vegetatively, with LHS trait data and examined how these traits varied in relation to the vegetational composition of 29 Central-European habitat types. Our analysis focused on determining whether clonal/bud bank or LHS traits play an important role for environmental filtering along gradients approximated by Ellenberg indicator values (EIV) across these habitats. Our results show that clonal and bud bank traits are at least as – if not more – important for the differentiation of the 29 habitat types. Overall, diversity and dominance of clonal and bud bank traits was more strongly correlated with gradients of light availability, temperature, moisture, soil reaction, and nutrient availability across these habitats than it was the case for traits of the leaf-height-seed scheme. Our results call for a stronger integration of belowground traits into the functional traits approach in plant ecology and for an extension of efforts to collect such data.

Keywords

community-weighted mean Czech Republic Ellenberg indicator values environmental filtering functional diversity plant strategy 

Notes

Acknowledgements

The authors thank Jan Lepš, Carlos P. Carmona and two reviewers for their helpful comments on the manuscript. This research was supported by the Grant Agency of the Czech Republic (GACR16-15012S).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

12224_2017_9292_MOESM1_ESM.docx (2.3 mb)
ESM 1 (DOCX 2332 kb)
12224_2017_9292_MOESM2_ESM.docx (564 kb)
ESM 2 (DOCX 563 kb)

References

  1. Botta-Dukát Z (2005) Rao's quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci 16:533–540CrossRefGoogle Scholar
  2. Burnham KP, Anderson DR (2002) Model selection and mulitmodel inferences – a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  3. Cadotte MW, Carscadden K, Mirotchnicket N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087CrossRefGoogle Scholar
  4. Callaghan TV, Carlsson BÅ, Jónsdóttir IS, Svensson BM, Jonasson S (1992) Clonal plants and environmental change: introduction to the proceedings and summary. Oikos 63:341–347CrossRefGoogle Scholar
  5. Catorci A, Ottaviani G, Ballelli S, Cesaretti S (2011) Functional differentiation of Central Apennine grasslands under mowing and grazing disturbance regimes. Polish J Ecol 59:115–128Google Scholar
  6. Catorci A, Vitanzi A, Tardella FM, Hršak V (2012) Trait variations along a regenerative chronosequence in the herb layer of submediterranean forests. Acta Oecol 43:29–41CrossRefGoogle Scholar
  7. Chytrý M, Rafajová M (2003) Czech National Phytosociological Database: basic statistics of the available vegetation-plot data. Preslia 75:1–15Google Scholar
  8. Chytrý M, Rafajovyá M (2003) Invasions by alien plants in the Czech Republic: a quantitative assessment across habitats. Preslia 77:339–354Google Scholar
  9. Cornwell WK, Schwilk DW, Ackerly DD (2006) A trait-based test for habitat filtering: convex hull volume. Ecology 87:1465–1471CrossRefPubMedGoogle Scholar
  10. Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79:109–126CrossRefGoogle Scholar
  11. Craine JM, Froehle J, Tilman DG, Wedin DA, Chapin IFS (2001) The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos 93: 274–285CrossRefGoogle Scholar
  12. Davis SD, Sperry JS, Hacke UG (1999) The relationship between xylem conduit diameter and cavitation caused by freezing. Amer J Bot 86:1367–1372CrossRefGoogle Scholar
  13. de Bello F, Doležal J, Ricotta C, Klimešová J (2011) Plant clonal traits, coexistence and turnover in East Ladakh, Trans-Himalaya. Preslia 83:315–327Google Scholar
  14. de Bello F, Lavorel S, Lavergne S, Albert CH, Boulangeat I, Mazel F, Thuiller W (2013a) Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecography 36:393–402CrossRefGoogle Scholar
  15. de Bello F, Vandewalle M, Reitalu T, Lepš J, Prentice HC, Lavorel S, Sykes MT (2013b) Evidence for scale-and disturbance-dependent trait assembly patterns in dry semi-natural grasslands. J Ecol 101:1237–1244CrossRefGoogle Scholar
  16. Dias ATC, Berg MP, de Bello F, Oosten AR, Bílá K, Moretti M (2013) An experimental framework to identify community functional components driving ecosystem processes and services delivery. J Ecol 101:29–37CrossRefGoogle Scholar
  17. Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304CrossRefGoogle Scholar
  18. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobot 18:2Google Scholar
  19. Eriksson O (1989) Seedling dynamics and life histories in clonal plants. Oikos 55:231–238CrossRefGoogle Scholar
  20. Exner A, Willner W, Grabherr G (2002) Picea abies and Abies alba forests of the Austrian Alps: numerical classification and ordination. Folia Geobot 37:383–402CrossRefGoogle Scholar
  21. Fujita Y, Venterink HO, van Bodegom PM, Douma JC, Heil GW, Hölzel N, Jablonska E, Kotowski W, Okruszko T, Pawlikowski P, de Ruiter PC, Wassen MJ (2014) Low investment in sexual reproduction threatens plants adapted to phosphorus limitation. Nature 505:82–86CrossRefPubMedGoogle Scholar
  22. Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Tousaint JP (2004) Plant functional ecology markers capture ecosystems properties during secondary succession. Ecology 85:2630–2637CrossRefGoogle Scholar
  23. Götzenberger L, de Bello F, Bråthen KA, Davison J, Dubuis A, Guisan A, Lepš K, Lindborg R, Moora M, Pärtel M, Pellissier L, Pottier J, Vittoz P, Zobel K, Zobel M (2012) Ecological assembly rules in plant communities – approaches, patterns and prospects. Biol Rev 87:111–127CrossRefPubMedGoogle Scholar
  24. Grime JP (2006) Plant strategies, vegetation processes, and ecosystem properties. John Wiley & Sons, TorontoGoogle Scholar
  25. Halassy M, Campetella G, Canullo R, Mucina L (2005) Patterns of functional clonal traits and clonal growth modes in contrasting grasslands in the central Apennines, Italy. J Veg Sci 16:29–36CrossRefGoogle Scholar
  26. Herben T, Nováková Z, Klimešová J (2013) Comparing functional diversity in traits and demography of Central European vegetation. J Veg Sci 24:910–920CrossRefGoogle Scholar
  27. Herben T, Šerá B, Klimešová J (2015) Clonal growth and sexual reproduction: tradeoffs and environmental constraints. Oikos 124:469–476CrossRefGoogle Scholar
  28. Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, van Groenendael JM, Klimeš L, Klimešová J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Dannemann A, Endels P, Götzenberger L, Hodgson JG, Jackel A-K, Kühn I, Kunzmann D, Ozinga WA, Römermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Peco B (2008) The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274CrossRefGoogle Scholar
  29. Klimeš L, Klimešová J, Hendriks RJJ, van Groenendael JM (1997) Clonal plant architecture: a comparative analysis of form and function. In de Kroon H & van Groenendael JM (eds) The ecology and evolution of clonal plants. Backhuys, Leiden, NL, pp 1–29Google Scholar
  30. Klimeš L, Klimešová J (1999) Root sprouting in Rumex acetosella under different nutrient levels. Pl Ecol 141:33–39CrossRefGoogle Scholar
  31. Klimešová J, Klimeš L (2007) Bud banks and their role in vegetative regeneration – a literature review and proposal for simple classification and assessment. Perspect Pl Ecol 8:115–129CrossRefGoogle Scholar
  32. Klimešová J, de Bello F (2009) CLO-PLA: the database of clonal and bud bank traits of Central European flora. J Veg Sci 20:511–516CrossRefGoogle Scholar
  33. Klimešová J, Doležal J, Dvorský M, de Bello F, Klimeš L (2011) Clonal growth forms in eastern Ladakh, western Himalayas: classification and habitat preferences. Folia Geobot 46:191–217CrossRefGoogle Scholar
  34. Klimešová J, Doležal J, Prach K, Košnar J (2012) Clonal growth forms in Arctic plants and their habitat preferences: a study from Petuniabukta, Spitsbergen. Polish Polar Res 33:421–442Google Scholar
  35. Klimešová J, Herben T (2015) Clonal and bud bank traits: patterns across temperate plant communities. J Veg Sci 26:243–253CrossRefGoogle Scholar
  36. Klimešová J, Tackenberg O, Herben T (2016) Herbs are different: clonal and bud bank traits can matter more than leaf–height–seed traits. New Phytol 210:13–17CrossRefPubMedGoogle Scholar
  37. Laliberté E, Legendre P, Shipley B (2014) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0–12. Available at https://cran.r-project.org/web/packages/FD
  38. Laughlin DC (2014) The intrinsic dimensionality of plant traits and its relevance to community assembly. J Ecol 102:186–193CrossRefGoogle Scholar
  39. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556CrossRefGoogle Scholar
  40. Liu F, Liu J, Dong M (2016) Ecological consequences of clonal integration in plants. Frontiers Pl Sci 7: 770Google Scholar
  41. MacArthur RH, Levins R (1967) The limiting similarity, convergence and divergence of coexisting species. Amer Naturalist 101:377–385CrossRefGoogle Scholar
  42. Mason NWH, de Bello F, Mouillot D, Pavoine S, Dray S (2013) A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. J Veg Sci 24:794–806CrossRefGoogle Scholar
  43. Mudrák O, Janeček S, Götzenberger L, de Bello F (2015) Fine-scale coexistence patterns along a productivity gradient in wet meadows: shifts from trait convergence to divergence. Ecography 39: 338–348CrossRefGoogle Scholar
  44. Mundry R, Nunn CL (2009) Stepwise model fitting and statistical inference: turning noise into signal pollution. Amer Naturalist 173:119–123.CrossRefGoogle Scholar
  45. Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Austral J Bot 61:167–234CrossRefGoogle Scholar
  46. R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at www.R-project.org Google Scholar
  47. Ricotta C, Moretti M (2011) CWM and Rao’s quadratic diversity: a unified framework for functional ecology. Oecologia 167:181–188CrossRefPubMedGoogle Scholar
  48. Schaffers AP, Sýkora KV (2000) Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J Veg Sci 11:225–244CrossRefGoogle Scholar
  49. Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113CrossRefGoogle Scholar
  50. Schimper AFW (1898) Pflanzengeographie auf physiologischer Grundlage. G. Fisher, JenaGoogle Scholar
  51. Tölgyesi C, Bátori Z, Erdős L (2014) Using statistical tests on relative ecological indicator values to compare vegetation units – different approaches and weighting methods. Ecol Indicators 36:441–446Google Scholar
  52. van Groenendael JM, Klimeš L, Klimešová J, Hendriks RJJ (1996) Comparative ecology of clonal plants. Philos Trans, Ser B 351:1331–1339CrossRefGoogle Scholar
  53. Vellend M (2010) Conceptual synthesis in community ecology. Quart Rev Biol 85:183–206CrossRefPubMedGoogle Scholar
  54. Wellstein C, Kuss P (2011) Diversity and frequency of clonal traits along natural and land-use gradients in grasslands of the Swiss Alps. Folia Geobot 46:255–270CrossRefGoogle Scholar
  55. Weiher E, van der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620CrossRefGoogle Scholar
  56. Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Pl & Soil 199:213–227CrossRefGoogle Scholar
  57. Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annual Rev Ecol Syst 2002:125–159CrossRefGoogle Scholar
  58. Wildi O (2016) Why mean indicator values are not biased. J Veg Sci 27:40–49CrossRefGoogle Scholar
  59. Willson MF, Traveset A (2000) The ecology of seed dispersal. In Fenner M (2000) Seeds: the ecology of regeneration in plant communities (2 nd Edition). CABI Publishing. School of Biological Sciences. University of Southampton, UK, 85–110 ppGoogle Scholar
  60. Wilson PJ, Thompson KEN, Hodgson JG (1999) Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol 143:155–162CrossRefGoogle Scholar
  61. Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Warton DI, Westoby, M (2005) Modulation of leaf economic traits and trait relationships by climate. Global Ecol Biogeogr 14:411–421Google Scholar
  62. Ye D, Hu Y, Song M, Pan X, Xie X, Liu G, Ye X, Dong M (2014) Clonality-climate relationships along latitudinal gradient across China: adaptation of clonality to environments. PLOS ONE 9:e94009Google Scholar
  63. Zelený D, Schaffers AP (2012) Too good to be true: pitfalls of using Ellenberg indicator values in vegetation analyses. J Veg Sci 23:419–431CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2017

Authors and Affiliations

  • Anna E.-Vojtkó
    • 1
    • 2
  • Martin Freitag
    • 3
  • Alessandro Bricca
    • 4
  • Felipe Martello
    • 5
  • Joaquín Moreno Compañ
    • 6
  • Martin Küttim
    • 7
  • Róbert Kun
    • 8
  • Francesco de Bello
    • 2
    • 9
  • Jitka Klimešová
    • 9
  • Lars Götzenberger
    • 9
    Email author
  1. 1.MTA Centre for Ecological Research, Danube Research Institute, Department of Tisza ResearchDebrecenHungary
  2. 2.Department of Botany, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  3. 3.Biodiversity and Ecosystem Research Group, Institute of Landscape EcologyUniversity of MünsterMünsterGermany
  4. 4.Department of ScienceUniversity of Roma TreRomeItaly
  5. 5.Department of Environmental SciencesFederal University of Sao CarlosSao Carlos - SPBrazil
  6. 6.Department of Environmental Sciences and Natural Resources & Institute of Biodiversity CIBIOUniversity of AlicanteAlicanteSpain
  7. 7.Institute of Ecology, School of Natural Sciences and HealthTallinn UniversityTallinnEstonia
  8. 8.Department of Nature Conservation and Landscape Ecology, Faculty of Agricultural and Environmental SciencesSzent István UniversityGödöllőHungary
  9. 9.Institute of BotanyCzech Academy of SciencesTřeboňCzech Republic

Personalised recommendations