Skip to main content

Hydrological heterogeneity rather than water chemistry explains the high plant diversity and uniqueness of a Pyrenean mixed mire


In the Alpine mountains, mire systems are found in the form of small, scattered landscape units. Nevertheless, they maintain noticeably high diversity in terms of plant specialists and community types. A unique, species-rich example in the central Pyrenees, Bassa Nera, is analysed here by describing the major gradients that drive species composition and their relationship with abiotic drivers. We studied the specific vegetation composition, water chemistry and seasonal dynamics of the water table at 35 sampling points. The floristic data confirmed the uniqueness of Bassa Nera in relation to similar Pyrenean mire systems, both in terms of total species richness and regionally rare mire specialists. We distinguished seven plant community types and identified the depth to the water table as the principal driver of the variation in species composition. The water chemistry determined smaller composition shifts, since variations in pH and cationic contents were moderate. Flooded areas were species poor whereas soligenous sub-alkaline fens supported the highest numbers of species. However, the harshest mire habitats (floating Sphagnum carpets and Sphagnum hummocks) stood out as they included the highest number of rare plants within relatively species-poor assemblages. Therefore, the high species richness and uniqueness of the Bassa Nera system mirrors a combination of a wide range of hydrological conditions and a moderate variation in water chemistry. This case study reveals how a few mire systems stand out as exceptional sites. Thus, in Alpine ranges a thorough survey on mire vegetation is needed to select and effectively protect these threatened relict ecosystems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    But the water retained at the top of the hummocks was noticeably more acidic; according to Pérez-Haase et al. (2012), the measures of this squeezed upper water from seven hummocks of Bassa Nera gave a mean value of 4.39 (stand. dev.: 0.56).


  1. Birks HH (2008) The Late-Quaternary history of arctic and alpine plants. Pl Ecol Divers 1:135–146

    Article  Google Scholar 

  2. de Bolòs O, Vigo J, Masalles RM, Ninot JM (2005) Flora manual dels Països Catalans. Pòrtic, Barcelona

    Google Scholar 

  3. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York

    Book  Google Scholar 

  4. ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Biometris, Wageningen

    Google Scholar 

  5. Bragazza L, Gerdol R (1999) Hydrology, groundwater chemistry and peat chemistry in relation to habitat conditions in a mire on the South-eastern Alps of Italy. Pl Ecol 144:243–256

    Article  Google Scholar 

  6. Bragazza L, Gerdol R (2002) Are nutrient availability and acidity-alkalinity gradients related in Sphagnum-dominated peatlands? J Veg Sci 13:473–482

    Article  Google Scholar 

  7. Bragazza L, Rydin H, Gerdol R (2005) Multiple gradients in mire vegetation: a comparison of a Swedish and an Italian bog. Pl Ecol 177:223–236

  8. Carrillo E, Brugués M, Carreras J, Cros RM, Ferré A, Ninot JM, Pérez-Haase A, Ruiz E (2008) Singularitat de la vegetació de les reserves integrals de Trescuro i d’Aiguamòg, In VII Jornades sobre recerca al Parc Nacional d’Aigüestortes i Estany de Sant Maurici. Generalitat de Catalunya, Barcelona, pp 177–192

  9. Casanovas L (1991) Estudis sobre l’estructura i l’ecologia de les molleres pirinenques. Doctoral Thesis, University of Barcelona

  10. Casanovas L (1992) Contribució a l’estudi de les torberes dels Pirineus, In Simposi internacional de Botànica Pius Font i Quer, 1988. Vol. II. Institut d’Estudis Ilerdencs, Lleida, pp 241–250

    Google Scholar 

  11. Casas C, Brugués M, Cros RM Sérgio C (2006) Handbook of mosses of the Iberian Peninsula and the Balearic Islands. Institut d’Estudis Catalans, Barcelona

    Google Scholar 

  12. Casas C, Brugués M, Cros RM, Sérgio C, Infante M (2009) Handbook of liverworts and hornworts of the Iberian Peninsula and the Balearic Islands: illustrated keys to genera and species. Institut d’Estudis Catalans, Barcelona

    Google Scholar 

  13. Coste H, Soulié J (1913) Florule du Val d’Aran. Bull Géogr Bot 23:91–208

    Google Scholar 

  14. Damman AWH, French TW (1987) The ecology of peat bogs of the glaciated northeastern USA: a community profile. Fish and Wildlife Service, U.S. Dept. of the Interior, Washington

    Google Scholar 

  15. van Diggelen R, Middleton BA, Bakker JP, Grootjans A, Wassen, M (2006) Fens and floodplains of the temperate zone: present status, threats, conservation and restoration. Appl Veg Sci 9:157–162

    Article  Google Scholar 

  16. Garilleti R, Albertos B (2012) Atlas de los briófitos amenazados de España. Universitat de València, València

    Google Scholar 

  17. Gerdol R (1990) Vegetation patterns and nutrient status of two mixed mires in the Southern Alps. J Veg Sci 1:663–668

    Article  Google Scholar 

  18. Goral F, Schellenberg J (2017). Goeveg: functions for Community Data and Ordinations. R package version 0.3.3. Available at

  19. Gore AJP (1983) Introduction. In Gore AJP (ed) Mires: swamp, bog, fen and moor. 4A. Elsevier Scientific, Amsterdam, pp 1–34

  20. Gorham E (1957) The development of peatlands. Quart Rev Biol 32:145–166

    Article  Google Scholar 

  21. Hájek M, Horsák M, Tichý L, Hájková P, Dítě D, Jamrichová E (2011) Testing a relict distributional pattern of fen plant and terrestrial snail species at the Holocene scale: a null model approach. J Biogeogr 38:742–755

    Article  Google Scholar 

  22. Hájková P, Horsák M, Hájek M, Jankovská V, Jamrichová E, Mouteliková J (2015) Using multi-proxy palaeoecology to test a relict status of refugial populations of calcareous-fen species in the Western Carpathians. Holocene 25:702–715

    Article  Google Scholar 

  23. Illa E, Carrillo E, Ninot, JM (2006) Patterns of plant traits in Pyrenean alpine vegetation. Flora 201:528–546

    Article  Google Scholar 

  24. Ingerpuu N, Vellak K, Kukk T, Pärtel M (2001) Bryophyte and vascular plant species richness in boreo-nemoral forests and mires. Biodivers & Conservation 10:2153–2166

    Article  Google Scholar 

  25. Jiménez-Alfaro B, Hájek M, Ejrnaes R, Rodwell J, Pawlikowski P, Weeda EJ, Laitinen J, Moen A, Bergamini A, Aunina L, Sekulová L, Tahvanainen T, Gillet F, Jandt U, Dítě D, Hájková P, Corriol G, Kondelin H, Díaz TE (2014) Biogeographic patterns of base-rich fen vegetation across Europe. Appl Veg Sci 17:367–380

    Article  Google Scholar 

  26. Jiménez-Alfaro B, Fernández-Pascual E, Díaz González TE, Pérez-Haase A, Ninot JM (2012) Diversity of rich fen vegetation and related plant specialists in mountain refugia of the Iberian Peninsula, Folia Geobot 47:403–419

    Article  Google Scholar 

  27. Jost, L (2006) Entropy and diversity. Oikos 113:363–375

  28. Körner C (2003) Alpine plant life. Functional plant ecology of high mountain ecosystems. Springer, Heidelberg

    Google Scholar 

  29. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data, Oecologia 129:271–280

    Article  PubMed  Google Scholar 

  30. Legendre, P, Legendre, L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  31. van der Maarel E (1979) Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39:97–114

    Article  Google Scholar 

  32. Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2015) Cluster analysis basics and extensions. R package version 2.0.3. Available at

  33. Malmer N (1986) Vegetational gradients in relation to environmental conditions in northwestern European mires. Canad J Bot 64:375–383

    Article  Google Scholar 

  34. Marini L, Nascimbene J, Scotton M, Klimek S (2008) Hydrochemistry, water table depth and related distribution patterns of vascular plants in a mixed mire. Pl Biosyst 142:79–86

    Article  Google Scholar 

  35. Molina JA 2001. Oligotrophic spring vegetation in Spanish mountain ranges. Folia Geobot 36:281–291

    Article  Google Scholar 

  36. Ninot JM, Carrillo E, Font X (1999) Hygrophilous herbaceous vegetation of Catalonia. retrieval from the data bank Floracat. Ann Bot (Genoa) 57:41–48

    Google Scholar 

  37. Ninot JM, Carreras J, Carrillo E, Vigo J (2000) Syntaxonomic conspectus of the vegetation of Catalonia and Andorra. I: hygrophylous herbaceous communities. Acta Bot Barcinon 46:191–237

    Google Scholar 

  38. Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2015) Vegan: community ecology package. R package version 2.2–1. Available at

  39. Pèlachs A, Pérez-Obiol R, Soriano JM, Pérez-Haase A (2017) Dinàmica de la vegetació, contaminació ambiental i incendis durant els últims 10.000 anys a la bassa Nera (Val d’Aran). In X Jornades sobre recerca al Parc Nacional d’Aigüestortes i Estany de Sant Maurici, Generalitat de Catalunya, Barcelona

  40. Pérez-Haase A, Ninot JM (2008) Caracterització florística i ecològica de les molleres de la Bassa Nera (Aiguamòg). In VII Jornades sobre recerca al Parc Nacional d’Aigüestortes i Estany de Sant Maurici, Generalitat de Catalunya, Barcelona, pp 193–213

    Google Scholar 

  41. Pérez-Haase A, Carrillo E, Batriu E, Ninot JM (2012) Diversitat de comunitats vegetals a les molleres de la Vall d’Aran (Pirineus centrals). Acta Bot Barcinon 53:61–112

    Google Scholar 

  42. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  43. Rybniček K (1984) The vegetation and development of Central European mires. In Moore PD (ed) European mires. Academic Press, London, pp 177–201

    Chapter  Google Scholar 

  44. Rydin H, Jeglum J (2006) The biology of peatlands. Oxford University Press, Oxford

    Book  Google Scholar 

  45. Sáez L, Aymerich P, Blanché C (2010) Llibre vermell de les plantes endèmiques i amenaçades de Catalunya. Argania editio. Barcelona

    Google Scholar 

  46. Sérgio C, Brugués M, Cros RM, Casas C, Garcia C (2007) The 2006 Red List and an updated checklist of bryophytes of the Iberian Peninsula (Portugal, Spain and Andorra). Lindbergia 31:109–125

    Google Scholar 

  47. Sjörs H (1948) Myrvegetation i Bergslagen. Acta Phytogeogr Suec 21:1–299

    Google Scholar 

  48. Sjörs H (1952) On the Relation between vegetation and electrolytes in North Swedish mire waters. Oikos 2:241–258

    Article  Google Scholar 

  49. Sjörs H (2002) Calcium and pH in north and central Swedish mire waters. J Ecol 90:650–657

    Article  Google Scholar 

  50. Thébaud G, Roux C, Delcoigne A, Pétel G (2012) A contribution to the revision of acid fen-land communities of temperate western Europe. Phytocoenologia 42:67–98

    Article  Google Scholar 

  51. Vitt DH (2006) Functional characteristics and indicators of Boreal Peatlands. In Wieder RK and Vitt DH (eds) Boreal peatland ecosystems. Springer, Berlin-Heidelberg, pp 9–24

  52. Wheeler BD, Proctor MCF (2000) Ecological gradients, subdivisions and terminology of north-west European mires. J Ecol 88:187–203

    Article  Google Scholar 

  53. Wieder RK, Vitt DH (2006) Boreal peatland ecosystems. Springer, Berlin-Heidelberg

    Book  Google Scholar 

Download references


We acknowledge several colleagues and students for assisting in field or laboratory tasks, Albert Ferré for producing Fig. 1 . This research was funded by projects REN2002-04268-C02-01 of the Spanish Education and Science Ministry and 634S/2012 of the Spanish Organismo Autónomo Parques Nacionales. A. P.-H. is grateful for the support provided by a grant given by AGAUR of the Catalan Government.

Author information



Corresponding author

Correspondence to Aaron Pérez-Haase.

Ethics declarations

Conflict of interest

We declare that the experiments comply with the current laws of the country in which they were performed.

Electronic supplementary material


(CSV 19 kb)


(TXT 7 kb)

Appendix 1

Table 5 Physiographic and bioclimatic descriptors of five Pyrenean mire systems (Beret, Filià, Prat Fondal, Siscaró and Coll de Pradell) as compared to Bassa Nera. Climatic information comes from digital climatic atlases of Catalonia ( and Andorra (, and geological information from the Cartographic and Geological Institute of Catalonia (

Appendix 2

Table 6 List of rare and specialist plants of the six study sites (p – species occurrence). The only rare species not considered also specialist was Brachythecium turgidum.

Appendix 3

Table 7 Spearman correlation coefficients between the environmental variables considered, i.e. ionic contents, pH and corrected conductivity (EC) of groundwater, percentage of time under distinct water table depth (flooding, between ground and −10 cm, between −10 and −25 cm, between −25 and −50 cm) and mean water table depth.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pérez-Haase, A., Ninot, J.M. Hydrological heterogeneity rather than water chemistry explains the high plant diversity and uniqueness of a Pyrenean mixed mire. Folia Geobot 52, 143–160 (2017).

Download citation


  • bogs
  • fens
  • high mountain
  • minerotrophy
  • ombrotrophy
  • rare plants