Skip to main content

Arable weed seed bank of grassland on former arable fields in mountain regions

Abstract

The changes in agricultural practice during the last century resulted in high-input farming in lowlands and the abandonment of crop fields in marginally profitable mountain regions. In Switzerland abandoned fields were converted into grassland. These fields had a rich historical flora and the few still existing fields still belong to the most species rich. As many arable weeds produce persistent seeds, abandoned fields should have a high potential to promote rare and threatened arable plants if tilled again. To test this hypothesis we collected 21 soil samples down to 20 cm depth in each the centre and the border of 38 abandoned fields. The centre and border samples of each field were each pooled, and afterwards the present seeds washed out. These seeds were then sown in pots and germination monitored in a greenhouse during six months. A total of 119 plant species were identified. Of these, 48 species were typical arable weeds and only one was red listed in Switzerland. The number of arable weeds per former field was lower at higher altitudes. Hence, the surveyed meadows have a small potential to promote threatened arable weeds if tilled again. Likely, some seeds were no longer viable because the fields were not tilled for a too long. If on newly established conservation fields no threatened species grow spontaneously after a few years, the reintroduction of desired plant species should be considered. The source of the seeds should preferably be a nearby species pool.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Albrecht H (2005) Development of arable weed seedbanks during the 6 years after the change from conventional to organic farming. Weed Res 45:339–350

    Article  Google Scholar 

  • Albrecht H, Auerswald K (2009) Seed traits in arable weed seed banks and their relationship to land-use changes. Basic Appl Ecol 10:516–524

    Article  Google Scholar 

  • Ball DA, Miller SD (1989) A comparison of techniques for estimation of arable soil seedbanks and their relationship to weed flora. Weed Res 29:365–373

    Article  Google Scholar 

  • Barralis G, Chadoeuf R, Lonchamp JP (1988) Longevité des semences de mauvaises herbes annuelles dans un sol cultivé. Weed Res 28:407–418

    Article  Google Scholar 

  • Baskin CC, Baskin JM (2001) Seeds: ecology, biogeography and evolution of dormancy and germination. Academic Press, San Diego

    Google Scholar 

  • Bekker RM et al. (1998) Seed size, shape and vertical distribution in the soil: indicators of seed longevity. Funct Ecol 12:834–842

    Article  Google Scholar 

  • Benech-Arnold RL, Sanchez RA, Forcella F, Kruk BC, Ghersa CM (2000) Environmental control of dormancy in weed seed banks in soil. Field Crop Res 67:105–122

    Article  Google Scholar 

  • Bischoff A (2005) Analysis of weed dispersal to predict chances of re-colonisation. Agric Eco-Syst Environm 106:377–387

    Article  Google Scholar 

  • Bischoff A, Mahn EG (2000) The effects of nitrogen and diaspore availability on the regeneration of weed communities following extensification. Agric Eco-Syst Environm 77:237–246

    Article  Google Scholar 

  • Brenchley WE, Warington K (1930) The weed seed population of arable soil: I. Numerical estimation of viable seeds and observations on their natural dormancy. J Ecol 18:235–272

    Google Scholar 

  • Cavers PB, Benoit DL (1989) Seed banks in arable land. In: M. A. Leek, Parker VT, Simpson RL (eds) Ecology of soil seed banks. Academic Press, London

    Google Scholar 

  • Chauvel B, Gasquez J, Darmency H (1989) Changes of weed seed bank parameters according to species, time and environment. Weed Res 29:213–219

    Article  Google Scholar 

  • Dessaint F, Chadoeuf R, Barralis G (1991) Spatial pattern analysis of weed seeds in the cultivated soil seed bank. J Appl Ecol 28:721–730

    Article  Google Scholar 

  • Dessaint F, Barralis G, Caixinhas ML, Mayor JP, Recasens J, Zanin G (1996) Precision of soil seedbank sampling: how many soil cores? Weed Res 36:143–151

    Article  Google Scholar 

  • Dutoit T, Gerbaud É, Buisson É, Roche P (2003) Dynamics of a weed community in a cereal field created after ploughing a seminatural meadow: roles of the permanent seed bank Ecoscience 10:225–235

    Google Scholar 

  • ESRI (2009) ArcGIS, 9.3. ESRI, Redlands

  • Flather CH, Hayward GD, Beissinger SR, Stephens PA (2011) Minimum viable populations: is there a ‘magic number’ for conservation practitioners? Trends Ecol Evol 26:307–316

    Article  PubMed  Google Scholar 

  • Hanf M (1999) Ackerunkräuter Europas mit ihren Keimlingen und Samen. 4. Auflage. BLV, Munich

    Google Scholar 

  • ter Heerdt GNJ, Verweij GL, Bekker RM, Bakker JP (1996) An improved method for seed-bank analysis: seedling emergence after removing the soil by sieving. Funct Ecol 10:144–151

    Article  Google Scholar 

  • Holzner W (1984) The origin of weeds: an ecological approach. Schweiz Landw Forsch 23:63–67

    Google Scholar 

  • Jeschke M, Kiehl K (2008) Effects of a dense moss layer on germination and establishment of vascular plants in newly created calcareous grasslands. Flora 203:557–566

    Article  Google Scholar 

  • Jones NE (1998) The number of soil cores required to accurately estimate the seed bank on arable land. Aspects Appl Biol 51:1–8

    Google Scholar 

  • Kéry M, Spillmann JH, Truong C, Holderegger R (2006) How biased are estimates of extinction probability in revisitation studies? J Ecol 94:980–986

    Article  Google Scholar 

  • Kleijn D, Verbeek M (2000) Factors affecting the species composition of arable field boundary vegetation. J Appl Ecol 37:256–266

    Article  Google Scholar 

  • Kohler F, Vandenberghe C, Imstepf R, Gillet F (2011) Restoration of threatened arable weed communities in abandoned mountainous crop fields. Restorat Ecol 19:62–69

    Article  Google Scholar 

  • Landolt E et al. (2010) Flora indicativa. Haupt, Berne

    Google Scholar 

  • Lewis J (1973) Longevity of crop and weed seeds: survival after 20 years in soil. Weed Res 13:179–191

    Article  Google Scholar 

  • Lutman PJW, Cussans GW, Wright BR, Wilson BJ, Wright GM, Lawson HM (2002) The persistence of seeds of 16 weed species over six years in two arable fields. Weed Res 42:231–241

    Article  Google Scholar 

  • MacDonald D et al. (2000) Agricultural abandonment in mountain areas of Europe: environmental consequences and policy response. J Environm Managem 59:47–69

    Google Scholar 

  • Marshall EJP, Moonen AC (2002) Field margins in northern Europe: their functions and interactions with agriculture. Agric Eco-Syst Environm 89:5–21

    Article  Google Scholar 

  • McCloskey M, Firbank LG, Watkinson AR, Webb DJ (1996) The dynamics of experimental arable weed communities under different management practices. J Veg Sci 7:799–808

    Article  Google Scholar 

  • MeteoSchweiz (2013) Klimanormwerte. MeteoSchweiz. Available at http://www.meteoschweiz.admin.ch/web/de/klima/klima_schweiz/tabellen.html

  • Meyer S, Leuschner C, Van Elsen T (2008) Schutzäcker für die Segetalflora in Deutschland - Bestandsanalyse und neue Impulse durch das Projekt Biodiversität in der Agrarlandschaft. J Pl Dis Protect 21:363–368

    Google Scholar 

  • Moser DM, Gygax A, Bäumler B, Wyler N, Palese R (2002) Rote Liste der gefährdeten Farn- und Blütenpflanzen der Schweiz. BUWAL, Berne

    Google Scholar 

  • Mrotzek R, Schmidt W (1993) Transekt- und Samenbankuntersuchungen zur Ermittlung von Veränderungen in Ackerwildkrautvegetation nach Änderung der Bewirtschaftungintensität. Verh Ges Ökol 22:139–143

    Google Scholar 

  • Otto S, Zuin MC, Chist È G, Zanin G (2007) A modelling approach using seedbank and soil properties to predict the relative weed density in organic fields of an Italian pre-alpine valley. Weed Res 47:311–326

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D (2013) NLME: Linear and nonlinear mixed effects models. Available at https://CRAN.R-project.org/package=nlme

  • R Core Team (2013) R: a language and environment for statistical computing, R – 3.0.2. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Richner N, Linder H-P, Holderegger R, Walter T (2014) Reviewing change in the arable flora of Europe: a meta-analysis. Weed Research 55:1–13

  • Roberts HA, Feast PM (1973) Emergence and longevity of seeds of annual weeds in cultivated and undisturbed soil. J Appl Ecol 10:133–143

    Article  Google Scholar 

  • Salzmann R (1939) Die Antropochoren der schweizerischen Kleegraswirtschaft, die Abhängigkeit ihrer Verbreitung von der Wasserstoffionenkonzentration und der Dispersität des Bodens mit Beiträgen zu ihrer Keimungsbiologie. University of Zurich

  • Schneider C, Sukopp U, Sukopp H (1994) Biologisch-ökologische Grundlagen des Schutzes gefährdeter Segetalpflanzen. Bundesamt für Naturschutz

    Google Scholar 

  • Smutný V, KÅ™en J (2003) The effect of different soil core samplers on precision of estimating weed seedbank in soil. Pl Soil Environm 49:466–472

    Article  Google Scholar 

  • Streifeneder TP (2009) Die Agrarstrukturen in den Alpen und ihre Entwicklung unter Berücksichtigung ihrer Bestimmungsgründe. Eine alpenweite Untersuchung anhand von Gemeindedaten. Ludwig-Maximilians-University

    Google Scholar 

  • Swisstopo (2014a) geo.admin.ch. Bundesamt für Landestopografie. Available at http://map.geo.admin.ch

  • Swisstopo (2014b) Luftbildindex. Bundesamt für Landestopografie. Available at http://www.luftbildindex.ch, Accessed 28. February 2014

  • Thompson K, Bakker JP, Bekker RM (1997) The soil seed banks of North West Europe: methodology, density and longevity. Cambridge University Press, Cambridge

    Google Scholar 

  • Thompson K, Bakker JP, Bekker RM, Hodgson JG (1998) Ecological correlates of seed persistence in soil in the north-west European flora. J Ecol 86:163–169

    Article  Google Scholar 

  • Toole EH, Hendricks SB, Borthwick HA, Toole VK (1956) Physiology of seed germination. Ann Rev Pl Physiol 7:299–324

    Article  CAS  Google Scholar 

  • Traill LW, Bradshaw CJA, Brook BW (2007) Minimum viable population size: a meta-analysis of 30 years of published estimates. Biol Conservation 139:159–166

    Article  Google Scholar 

  • Vander Mijnsbrugge K, Bischoff A, Smith B (2010) A question of origin: where and how to collect seed for ecological restoration. Basic Appl Ecol 11:300–311

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S. Fourth edition. Springer, New York

    Book  Google Scholar 

  • Volkart A (1933) Untersuchungen über den Ackerbau und die Ackerunkräuter im Gebirge. Landw Jahrb Schweiz 10:78–138

    Google Scholar 

  • Wäldchen J, Pusch J, Luthardt V (2005) Zur Diasporen-Keimfähigkeit von Segetalpflanzen. Beitr Forstw Landschaftsökol 38:145–156

    Google Scholar 

  • Wesson G, Wareing PF (1969) The role of light in the germination of naturally occurring populations of buried weed seeds. J Exp Bot 20:402–413

    Article  Google Scholar 

  • Wiles L, Schweizer E (2002) Spatial dependence of weed seed banks and strategies for sampling. Weed Sci 50:595–606

    Article  CAS  Google Scholar 

  • Zhang J, Hamill AS, Gardiner IO, Weaver SE (1998) Dependence of weed flora on the active soil seedbank. Weed Res 38:143–152

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Richner.

Appendices

Appendix 1

Table 5 Frequency of species recorded in the historical surveys and germinated from the soil seed bank in 2011

Appendix 2

Table 6 Frequency and seed longevity according to Landolt et al. (2010) of species re-found at the same location in historical surveys and contemporary soil seed banks

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richner, N., Walter, T., Peter Linder, H. et al. Arable weed seed bank of grassland on former arable fields in mountain regions. Folia Geobot 53, 49–61 (2018). https://doi.org/10.1007/s12224-017-9288-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-017-9288-x

Keywords