Folia Geobotanica

, Volume 53, Issue 1, pp 49–61 | Cite as

Arable weed seed bank of grassland on former arable fields in mountain regions

  • Nina Richner
  • Thomas Walter
  • H. Peter Linder
  • Rolf Holderegger


The changes in agricultural practice during the last century resulted in high-input farming in lowlands and the abandonment of crop fields in marginally profitable mountain regions. In Switzerland abandoned fields were converted into grassland. These fields had a rich historical flora and the few still existing fields still belong to the most species rich. As many arable weeds produce persistent seeds, abandoned fields should have a high potential to promote rare and threatened arable plants if tilled again. To test this hypothesis we collected 21 soil samples down to 20 cm depth in each the centre and the border of 38 abandoned fields. The centre and border samples of each field were each pooled, and afterwards the present seeds washed out. These seeds were then sown in pots and germination monitored in a greenhouse during six months. A total of 119 plant species were identified. Of these, 48 species were typical arable weeds and only one was red listed in Switzerland. The number of arable weeds per former field was lower at higher altitudes. Hence, the surveyed meadows have a small potential to promote threatened arable weeds if tilled again. Likely, some seeds were no longer viable because the fields were not tilled for a too long. If on newly established conservation fields no threatened species grow spontaneously after a few years, the reintroduction of desired plant species should be considered. The source of the seeds should preferably be a nearby species pool.


Conservation Restoration Segetal species Swiss Alps 


  1. Albrecht H (2005) Development of arable weed seedbanks during the 6 years after the change from conventional to organic farming. Weed Res 45:339–350CrossRefGoogle Scholar
  2. Albrecht H, Auerswald K (2009) Seed traits in arable weed seed banks and their relationship to land-use changes. Basic Appl Ecol 10:516–524CrossRefGoogle Scholar
  3. Ball DA, Miller SD (1989) A comparison of techniques for estimation of arable soil seedbanks and their relationship to weed flora. Weed Res 29:365–373CrossRefGoogle Scholar
  4. Barralis G, Chadoeuf R, Lonchamp JP (1988) Longevité des semences de mauvaises herbes annuelles dans un sol cultivé. Weed Res 28:407–418CrossRefGoogle Scholar
  5. Baskin CC, Baskin JM (2001) Seeds: ecology, biogeography and evolution of dormancy and germination. Academic Press, San DiegoGoogle Scholar
  6. Bekker RM et al. (1998) Seed size, shape and vertical distribution in the soil: indicators of seed longevity. Funct Ecol 12:834–842CrossRefGoogle Scholar
  7. Benech-Arnold RL, Sanchez RA, Forcella F, Kruk BC, Ghersa CM (2000) Environmental control of dormancy in weed seed banks in soil. Field Crop Res 67:105–122CrossRefGoogle Scholar
  8. Bischoff A (2005) Analysis of weed dispersal to predict chances of re-colonisation. Agric Eco-Syst Environm 106:377–387CrossRefGoogle Scholar
  9. Bischoff A, Mahn EG (2000) The effects of nitrogen and diaspore availability on the regeneration of weed communities following extensification. Agric Eco-Syst Environm 77:237–246CrossRefGoogle Scholar
  10. Brenchley WE, Warington K (1930) The weed seed population of arable soil: I. Numerical estimation of viable seeds and observations on their natural dormancy. J Ecol 18:235–272Google Scholar
  11. Cavers PB, Benoit DL (1989) Seed banks in arable land. In: M. A. Leek, Parker VT, Simpson RL (eds) Ecology of soil seed banks. Academic Press, LondonGoogle Scholar
  12. Chauvel B, Gasquez J, Darmency H (1989) Changes of weed seed bank parameters according to species, time and environment. Weed Res 29:213–219CrossRefGoogle Scholar
  13. Dessaint F, Chadoeuf R, Barralis G (1991) Spatial pattern analysis of weed seeds in the cultivated soil seed bank. J Appl Ecol 28:721–730CrossRefGoogle Scholar
  14. Dessaint F, Barralis G, Caixinhas ML, Mayor JP, Recasens J, Zanin G (1996) Precision of soil seedbank sampling: how many soil cores? Weed Res 36:143–151CrossRefGoogle Scholar
  15. Dutoit T, Gerbaud É, Buisson É, Roche P (2003) Dynamics of a weed community in a cereal field created after ploughing a seminatural meadow: roles of the permanent seed bank Ecoscience 10:225–235Google Scholar
  16. ESRI (2009) ArcGIS, 9.3. ESRI, RedlandsGoogle Scholar
  17. Flather CH, Hayward GD, Beissinger SR, Stephens PA (2011) Minimum viable populations: is there a ‘magic number’ for conservation practitioners? Trends Ecol Evol 26:307–316CrossRefPubMedGoogle Scholar
  18. Hanf M (1999) Ackerunkräuter Europas mit ihren Keimlingen und Samen. 4. Auflage. BLV, MunichGoogle Scholar
  19. ter Heerdt GNJ, Verweij GL, Bekker RM, Bakker JP (1996) An improved method for seed-bank analysis: seedling emergence after removing the soil by sieving. Funct Ecol 10:144–151CrossRefGoogle Scholar
  20. Holzner W (1984) The origin of weeds: an ecological approach. Schweiz Landw Forsch 23:63–67Google Scholar
  21. Jeschke M, Kiehl K (2008) Effects of a dense moss layer on germination and establishment of vascular plants in newly created calcareous grasslands. Flora 203:557–566CrossRefGoogle Scholar
  22. Jones NE (1998) The number of soil cores required to accurately estimate the seed bank on arable land. Aspects Appl Biol 51:1–8Google Scholar
  23. Kéry M, Spillmann JH, Truong C, Holderegger R (2006) How biased are estimates of extinction probability in revisitation studies? J Ecol 94:980–986CrossRefGoogle Scholar
  24. Kleijn D, Verbeek M (2000) Factors affecting the species composition of arable field boundary vegetation. J Appl Ecol 37:256–266CrossRefGoogle Scholar
  25. Kohler F, Vandenberghe C, Imstepf R, Gillet F (2011) Restoration of threatened arable weed communities in abandoned mountainous crop fields. Restorat Ecol 19:62–69CrossRefGoogle Scholar
  26. Landolt E et al. (2010) Flora indicativa. Haupt, BerneGoogle Scholar
  27. Lewis J (1973) Longevity of crop and weed seeds: survival after 20 years in soil. Weed Res 13:179–191CrossRefGoogle Scholar
  28. Lutman PJW, Cussans GW, Wright BR, Wilson BJ, Wright GM, Lawson HM (2002) The persistence of seeds of 16 weed species over six years in two arable fields. Weed Res 42:231–241CrossRefGoogle Scholar
  29. MacDonald D et al. (2000) Agricultural abandonment in mountain areas of Europe: environmental consequences and policy response. J Environm Managem 59:47–69Google Scholar
  30. Marshall EJP, Moonen AC (2002) Field margins in northern Europe: their functions and interactions with agriculture. Agric Eco-Syst Environm 89:5–21CrossRefGoogle Scholar
  31. McCloskey M, Firbank LG, Watkinson AR, Webb DJ (1996) The dynamics of experimental arable weed communities under different management practices. J Veg Sci 7:799–808CrossRefGoogle Scholar
  32. MeteoSchweiz (2013) Klimanormwerte. MeteoSchweiz. Available at
  33. Meyer S, Leuschner C, Van Elsen T (2008) Schutzäcker für die Segetalflora in Deutschland - Bestandsanalyse und neue Impulse durch das Projekt Biodiversität in der Agrarlandschaft. J Pl Dis Protect 21:363–368Google Scholar
  34. Moser DM, Gygax A, Bäumler B, Wyler N, Palese R (2002) Rote Liste der gefährdeten Farn- und Blütenpflanzen der Schweiz. BUWAL, BerneGoogle Scholar
  35. Mrotzek R, Schmidt W (1993) Transekt- und Samenbankuntersuchungen zur Ermittlung von Veränderungen in Ackerwildkrautvegetation nach Änderung der Bewirtschaftungintensität. Verh Ges Ökol 22:139–143Google Scholar
  36. Otto S, Zuin MC, Chist È G, Zanin G (2007) A modelling approach using seedbank and soil properties to predict the relative weed density in organic fields of an Italian pre-alpine valley. Weed Res 47:311–326CrossRefGoogle Scholar
  37. Pinheiro J, Bates D, DebRoy S, Sarkar D (2013) NLME: Linear and nonlinear mixed effects models. Available at
  38. R Core Team (2013) R: a language and environment for statistical computing, R – 3.0.2. R Foundation for Statistical Computing, ViennaGoogle Scholar
  39. Richner N, Linder H-P, Holderegger R, Walter T (2014) Reviewing change in the arable flora of Europe: a meta-analysis. Weed Research 55:1–13Google Scholar
  40. Roberts HA, Feast PM (1973) Emergence and longevity of seeds of annual weeds in cultivated and undisturbed soil. J Appl Ecol 10:133–143CrossRefGoogle Scholar
  41. Salzmann R (1939) Die Antropochoren der schweizerischen Kleegraswirtschaft, die Abhängigkeit ihrer Verbreitung von der Wasserstoffionenkonzentration und der Dispersität des Bodens mit Beiträgen zu ihrer Keimungsbiologie. University of ZurichGoogle Scholar
  42. Schneider C, Sukopp U, Sukopp H (1994) Biologisch-ökologische Grundlagen des Schutzes gefährdeter Segetalpflanzen. Bundesamt für NaturschutzGoogle Scholar
  43. Smutný V, Křen J (2003) The effect of different soil core samplers on precision of estimating weed seedbank in soil. Pl Soil Environm 49:466–472CrossRefGoogle Scholar
  44. Streifeneder TP (2009) Die Agrarstrukturen in den Alpen und ihre Entwicklung unter Berücksichtigung ihrer Bestimmungsgründe. Eine alpenweite Untersuchung anhand von Gemeindedaten. Ludwig-Maximilians-UniversityGoogle Scholar
  45. Swisstopo (2014a) Bundesamt für Landestopografie. Available at
  46. Swisstopo (2014b) Luftbildindex. Bundesamt für Landestopografie. Available at, Accessed 28. February 2014
  47. Thompson K, Bakker JP, Bekker RM (1997) The soil seed banks of North West Europe: methodology, density and longevity. Cambridge University Press, CambridgeGoogle Scholar
  48. Thompson K, Bakker JP, Bekker RM, Hodgson JG (1998) Ecological correlates of seed persistence in soil in the north-west European flora. J Ecol 86:163–169CrossRefGoogle Scholar
  49. Toole EH, Hendricks SB, Borthwick HA, Toole VK (1956) Physiology of seed germination. Ann Rev Pl Physiol 7:299–324CrossRefGoogle Scholar
  50. Traill LW, Bradshaw CJA, Brook BW (2007) Minimum viable population size: a meta-analysis of 30 years of published estimates. Biol Conservation 139:159–166CrossRefGoogle Scholar
  51. Vander Mijnsbrugge K, Bischoff A, Smith B (2010) A question of origin: where and how to collect seed for ecological restoration. Basic Appl Ecol 11:300–311CrossRefGoogle Scholar
  52. Venables WN, Ripley BD (2002) Modern applied statistics with S. Fourth edition. Springer, New YorkCrossRefGoogle Scholar
  53. Volkart A (1933) Untersuchungen über den Ackerbau und die Ackerunkräuter im Gebirge. Landw Jahrb Schweiz 10:78–138Google Scholar
  54. Wäldchen J, Pusch J, Luthardt V (2005) Zur Diasporen-Keimfähigkeit von Segetalpflanzen. Beitr Forstw Landschaftsökol 38:145–156Google Scholar
  55. Wesson G, Wareing PF (1969) The role of light in the germination of naturally occurring populations of buried weed seeds. J Exp Bot 20:402–413CrossRefGoogle Scholar
  56. Wiles L, Schweizer E (2002) Spatial dependence of weed seed banks and strategies for sampling. Weed Sci 50:595–606CrossRefGoogle Scholar
  57. Zhang J, Hamill AS, Gardiner IO, Weaver SE (1998) Dependence of weed flora on the active soil seedbank. Weed Res 38:143–152CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2017

Authors and Affiliations

  • Nina Richner
    • 1
  • Thomas Walter
    • 2
  • H. Peter Linder
    • 3
  • Rolf Holderegger
    • 4
    • 5
  1. 1.Fornat AGZurichSwitzerland
  2. 2.Agroscope ISSInstitute for Sustainable SciencesZurichSwitzerland
  3. 3.Institute of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
  4. 4.WSL Swiss Federal ResearchBirmensdorfSwitzerland
  5. 5.Department of Environmental Systems SciencsZurichSwitzerland

Personalised recommendations