Folia Geobotanica

, Volume 52, Issue 1, pp 59–69 | Cite as

Habitat requirements of endangered species in a former coppice of high conservation value

  • Jan Roleček
  • Ondřej Vild
  • Jiří Sladký
  • Radomír Řepka
Article

Abstract

Transformation of coppices to high forests has caused fundamental changes in site conditions and a decline of many species across Central Europe. Nevertheless, some formerly coppiced forests still harbour a number of the declining species and have become biodiversity hotspots in the changing landscape. We focused on the best-preserved remnant of formerly grazed and coppiced subcontinental oak forest in the Czech Republic – the Dúbrava forest near the town of Hodonín. To improve our understanding of the ecology of declining species, we studied local habitat requirements of vascular plants most endangered at the national level. We recorded vegetation composition and sampled important site variables in plots with the largest populations of endangered species and in additional plots placed randomly across all major forest habitats. We demonstrated that sites with endangered species have a highly uneven distribution in ecological space and that their species composition is often similar to open-canopy oak forests. Within this habitat, the endangered species are concentrated in places with a high light availability and high soil pH. Light-demanding species characteristic of subcontinental oak forests are the best indicators of these sites, while broadly distributed shade-tolerant and nutrient-demanding species avoid them. These results support the view that the occurrence of many endangered species in the Dúbrava forest is a legacy of the long history of traditional management that kept the canopies open. Light-demanding species are now threatened by ongoing successional changes. Therefore, active conservation measures are recommended, including opening up the canopies, early thinning of young stands, control of expansive and invasive species and understorey grazing or mowing.

Keywords

abandoned coppice environmental requirements subcontinental oak forest plant diversity threatened species 

Notes

Acknowledgements

Our thanks go out to Martin Kopecký for calculation of the convergence index, Martina Fabšičová, Pavel Unar, Vladan Riedl and Martin Kopecký for help with vegetation sampling within project IAA600050812, Radim Hédl for kindly providing soil chemistry data acquired within project IAA600050812, David Zelený for the discussion regarding ordination methods and Jan W. Jongepier for improving our English. This paper was produced as part of the project ‘Coppice forests as the production and biological alternative for the future’ (No. CZ.1.07/2.3.00/20.0267) with financial contribution of the EC and the state budget of the Czech Republic. Besides, the research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013) / ERC Grant agreement No. 278065, and the long-term research project RVO 67985939 from the Czech Academy of Sciences.

References

  1. Baeten L, Bauwens B, De Schrijver A, De Keersmaeker L, Van Calster H, Vandekerkhove K, Roelandt B, Beeckman H, Verheyen K (2009) Herb layer changes (1954–2000) related to the conversion of coppice-with-standards forest and soil acidification. Appl Veg Sci 12:187–197CrossRefGoogle Scholar
  2. Berg Å, Ehnström B, Gustafsson L, Hallingbäck T, Jonsell M, Weslien J (1994) Threatened plant, animal, and fungus species in Swedish forests: distribution and habitat associations. Conservation Biol 8:718–731CrossRefGoogle Scholar
  3. Berg Å, Ehnström B, Gustafsson L, Hallingbäck T, Jonsell M, Weslien J (1995) Threat levels and threats to red-listed species in Swedish forests. Conservation Biol 9:1629–1633CrossRefGoogle Scholar
  4. Brunet J, Hedwall P-O, Holmström E, Wahlgren E (2016) Disturbance of the herbaceous layer after invasion of an eutrophic temperate forest by wild boar. Nordic J Bot 34:120–128CrossRefGoogle Scholar
  5. Chytrý M (2012) Vegetation of the Czech Republic: diversity, ecology, history and dynamics. Preslia 84:427–504Google Scholar
  6. Chytrý M, Horák J (1997) Plant communities of the thermophilous oak forests in Moravia. Preslia 68:193–233Google Scholar
  7. Chytrý M, Kučera T, Kočí M, Grulich V & Lustyk P (eds) (2010) Katalog biotopů České republiky. Ed. 2 (Habitat catalogue of the Czech Republic. Ed. 2). AOPK ČR, PragueGoogle Scholar
  8. Chytrý M, Tichý L, Roleček J (2003) Local and regional patterns of species richness in Central European vegetation types along the pH/calcium gradient. Folia Geobot 38:429–442CrossRefGoogle Scholar
  9. Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V, Böhner J (2015) System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci Model Developm 8:1991–2007CrossRefGoogle Scholar
  10. Dengler J, Chytrý M, Ewald J (2008) Phytosociology. In Jørgensen SE, Fath BD (eds) Encyclopedia of ecology. Elsevier, Oxford, pp 2767–2779CrossRefGoogle Scholar
  11. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulissen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobot 18:1–248Google Scholar
  12. Ewald J (2003) The calcareous riddle: Why are there so many calciphilous species in the Central European flora? Folia Geobot 38:357–366CrossRefGoogle Scholar
  13. Formánek E (1887) Květena Moravy a rakouského Slezska (Flora of Moravia and Austrian Silesia). Edvard Formánek, BrnoGoogle Scholar
  14. Gabrielová J, Münzbergová Z, Tackenberg O, Chrtek J (2013) Can we distinguish plant species that are rare and endangered from other plants using their biological traits? Folia Geobot 48:449–466CrossRefGoogle Scholar
  15. Gaskin GJ, Miller JD (1996) Measurement of soil water content using a simplified impedance measuring technique. J Agric Eng Res 63:153–159CrossRefGoogle Scholar
  16. Grandcolas P, Nattier R, Trewick S (2014) Relict species: a relict concept? Trends Ecol Evol 29:655–663CrossRefPubMedGoogle Scholar
  17. Grulich V (2012) Red List of vascular plants of the Czech Republic, 3rd edition. Preslia 84:631–645Google Scholar
  18. Hájková P, Roleček J, Hájek M, Horsák M, Fajmon K, Polák M, Jamrichová E (2011) Prehistoric origin of the extremely species-rich semi-dry grasslands in the Bílé Karpaty Mts (Czech Republic and Slovakia). Preslia 83:185–204Google Scholar
  19. Hédl R, Kopecký M, Komárek J (2010) Half a century of succession in a temperate oakwood: from species-rich community to mesic forest. Diversity & Distrib 16:267–276.CrossRefGoogle Scholar
  20. Hofmeister J, Mihaljevič M, Hošek J (2004) The spread of ash (Fraxinus excelsior) in some European oak forests: an effect of nitrogen deposition or successional change? Forest Ecol Managem 203:35–47CrossRefGoogle Scholar
  21. Hothorn T, Hornik K, van de Wiel MA, Zeileis A (2006) A Lego system for conditional inference. Amer Statistician 60:257–263CrossRefGoogle Scholar
  22. Hruby J (1926) Göding in Mähren und seine Umgebung. Čas Morav Zemsk Mus Brno 24:60–97Google Scholar
  23. Iversen J (1958) The bearing of glacial and interglacial epochs on the formation and extinction of plant taxa. Uppsala Univ Årsskr 6:210–215Google Scholar
  24. Jakubowska-Gabara J (1996) Decline of Potentillo albae-Quercetum Libb. 1933 phytocoenoses in Poland. Vegetatio 124:45–59CrossRefGoogle Scholar
  25. Jamrichová E, Szabó P, Hédl R, Kuneš P, Bobek P, Pelánková B (2013) Continuity and change in the vegetation of a Central European oakwood. The Holocene 23:46–56CrossRefGoogle Scholar
  26. Kirby K, Watkins C (eds) (2015) Europe’s changing woods and forests: from wildwood to managed landscapes. CABI, LondonGoogle Scholar
  27. Konvička M, Čížek L, Beneš J (2004) Ohrožený hmyz nížinných lesů: ochrana a management (Endangered insects of lowland forests: conservation and management). Sagittaria, OlomoucGoogle Scholar
  28. Konvicka M, Novak J, Benes J, Fric Z, Bradley J, Keil P, Hrcek J, Chobot K, Marhoul P (2008) The last population of the Woodland Brown butterfly (Lopinga achine) in the Czech Republic: habitat use, demography and site management. J Insect Conserv 12:549–560CrossRefGoogle Scholar
  29. Kopecký M, Čížková Š (2010) Using topographic wetness index in vegetation ecology: Does the algorithm matter? Appl Veg Sci 13:450–459CrossRefGoogle Scholar
  30. Kubát K, Hrouda L, Chrtek J Jun., Kaplan Z, Kirschner J, Štěpánek J (2002) Klíč ke květeně České republiky (Key to the flora of the Czech Republic). Academia, PrahaGoogle Scholar
  31. Kuneš P, Svobodová-Svitavská H, Kolář J, Hajnalová M, Abraham V, Macek M, Tkáč P, Szabó P (2015) The origin of grasslands in the temperate forest zone of east-central Europe: long-term legacy of climate and human impact. Quatern Sci Rev 116:15–27CrossRefGoogle Scholar
  32. Kwiatkowska AJ, Wyszomirski T (1988) Decline of Potentillo albae-Quercetum phytocoenoses associated with the invasion of Carpinus betulus. Vegetatio 75:49–55CrossRefGoogle Scholar
  33. Lang G (1994) Quartäre Vegetationsgeschichte Europas. Gustav Fischer Verlag, JenaGoogle Scholar
  34. Ložek V (2007) Zrcadlo minulosti: česká a slovenská krajina v kvartéru (Mirror of the past: Czech and Slovak landscape in the Quaternary). Dokořán, PrahaGoogle Scholar
  35. Milner JM, Bonenfant C, Mysterud A, Gaillard JM, Csanyi S, Stenseth NC (2006) Temporal and spatial development of red deer harvesting in Europe: biological and cultural factors. J Appl Ecol 43:721–734CrossRefGoogle Scholar
  36. Müllerová J, Szabó P, Hédl R (2014) The rise and fall of traditional forest management in southern Moravia: a history of the past 700 years. Forest Ecol Managem 331:104–115CrossRefGoogle Scholar
  37. Müllerová J, Hédl R, Szabó P (2015) Coppice abandonment and its implications for species diversity in forest vegetation. Forest Ecol Managem 343:88–100CrossRefGoogle Scholar
  38. Naaf T, Wulf M (2010) Habitat specialists and generalists drive homogenization and differentiation of temperate forest plant communities at the regional scale. Biol Conservation 143:848–855CrossRefGoogle Scholar
  39. NCA CR (2011) Habitat mapping layer [electronic georeferenced database]. Version 2011. Nature Conservation Agency of the Czech Republic, Prague, Accessed 5 Sept 2011Google Scholar
  40. Nobis M, Hunziker U (2005) Automatic thresholding for hemispherical canopy-photographs based on edge detection. Agric Forest Meteorol 128:243–250CrossRefGoogle Scholar
  41. Novák V, Pelíšek J (1943) Stručná charakteristika půd na přesypových pískách v lesní oblasti Dubrava u Hodonína (Brief characteristics of soils on eolian sand in the forest region of Dubrava near Hodonín). Lesn Práce 8:225–235Google Scholar
  42. Pärtel M (2002) Local plant diversity patterns and evolutionary history at the regional scale. Ecology 83:2361–2366CrossRefGoogle Scholar
  43. Pokorný P, Kuneš P (2005) Holocene acidification process recorded in three pollen profiles from Czech sandstone and river terrace environments. Ferrantia 44:101–107Google Scholar
  44. Pokorný P, Chytrý M, Juřičková L, Sádlo J, Novák J, Ložek V (2015) Mid-Holocene bottleneck for central European dry grasslands: Did steppe survive the forest optimum in northern Bohemia, Czech Republic? The Holocene 25:716–726CrossRefGoogle Scholar
  45. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org Google Scholar
  46. Rackham O (2003) Ancient woodland: its history, vegetation and uses in England. Castlepoint Press, DalbeattieGoogle Scholar
  47. Řepka R (2009) Druhová diverzita vyšších rostlin versus lesnický management v evropsky významné lokalitě (EVL) Hodonínská Doubrava (Vascular plant species richness versus forestry management in the SCI Hodonínská Doubrava). Zprávy Čes Bot Společn Mater 24:111–120Google Scholar
  48. Roleček J (2007) Formalized classification of thermophilous oak forests in the Czech Republic: What brings the Cocktail method? Preslia 79:1–21Google Scholar
  49. Roleček J (2013) Thermophilous oak forests. Quercetea pubescentis. In Chytrý M (ed) Vegetation of the Czech Republic 4. Forest and scrub vegetation. Academia, Praha, pp 296–337Google Scholar
  50. Roleček J, Hájek M, Karlík P, Novák J (2015) Reliktní vegetace na mezických stanovištích (Relict vegetation on mesic sites). Zprávy Čes Bot Společn 50:201–245Google Scholar
  51. Rybníček K (1983) The environmental evolution and infilling process of a former lake near Vracov (Czechoslovakia). Hydrobiologia 103:247–250CrossRefGoogle Scholar
  52. Sádlo J (2000) Původ travinné vegetace slatin v Čechách: sukcese kontra cenogeneze. Preslia 72:495–506Google Scholar
  53. Šmarda F (1961) Rostlinná společenstva území přesypových písků lesa Doubravy u Hodonína (Plant communities of the eolian sand area in Doubrava forest near Hodonín). Práce Brněnské základny Českoslov Akad věd 413:1–56Google Scholar
  54. Szabó P (2013) The end of common uses and traditional management in a Central European wood. In Rotherham ID (ed) Cultural severance and the environment. The ending of traditional and customary practice on commons and landscapes managed in common. Springer Netherlands, Dordrecht, pp 205–213Google Scholar
  55. Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453CrossRefGoogle Scholar
  56. Vera FWM (2000) Grazing ecology and forest history. CABI, New YorkCrossRefGoogle Scholar
  57. Verheyen K, Baeten L, De Frenne P, Bernhardt-Römermann M, Brunet J, Cornelis J, Decocq G, Dierschke H, Eriksson O, Hédl R, Heinken T, Hermy M, Hommel P, Kirby K, Naaf T, Peterken G, Petřík P, Pfadenhauer J, Van Calster H, Walther G-R, Wulf M, Verstraeten G (2012) Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests J Ecol 100:352–365Google Scholar
  58. Vesecký A (1961) Podnebí Československé socialistické republiky. Tabulky (Climate of the Czechoslovak Socialist Republic. Tables). Hydrometeorologický ústav, PrahaGoogle Scholar
  59. Vild O, Roleček J, Hédl R, Kopecký M, Utinek D (2013) Experimental restoration of coppice-with-standards: response of understorey vegetation from the conservation perspective. Forest Ecol Managem 310:234–241CrossRefGoogle Scholar
  60. Ward AI (2005) Expanding ranges of wild and feral deer in Great Britain. Mammal Rev 35:165–173CrossRefGoogle Scholar
  61. Wood A, Stedman-Edwards P, Mang J (eds) (2000) The root causes of biodiversity loss. Earthscan, LondonGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2017

Authors and Affiliations

  • Jan Roleček
    • 1
    • 2
  • Ondřej Vild
    • 1
    • 2
  • Jiří Sladký
    • 3
  • Radomír Řepka
    • 4
  1. 1.Department of Vegetation EcologyInstitute of Botany, Czech Academy of SciencesBrnoCzech Republic
  2. 2.Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  3. 3.HodonínCzech Republic
  4. 4.Department of Forest Botany, Dendrology and Geobiocenology, Faculty of Forestry and Wood TechnologyMendel UniversityBrnoCzech Republic

Personalised recommendations