Skip to main content

Should ‘wetlands’ cover all aquatic ecosystems and do macrophytes make a difference to their ecosystem services?

Abstract

The Ramsar Convention has gradually expanded the scope of the term ‘wetland’ to bring under its umbrella all kinds of inland freshwater (and saline) ecosystems as well as many marine ecosystems. It is not possible to develop a common framework for the study, management or policy of such a large and divergent assemblage of habitats with water being a single shared feature. In this paper, I argue that wetlands are distinct from deep open water systems such as rivers, lakes and reservoirs. The restriction of macrophytes (except the free floating plants like salvinia and water hyacinth) to shallow water habitats helps distinguish between wetlands and deep water systems. Following an ecosystem service approach, I discuss that wetlands are generally characterized by the occurrence of macrophytes, which critically contribute to their provisioning, regulating, supporting and cultural ecosystem services that differ significantly from those of the microphyte (phytoplankton)-dominated deep water habitats. I argue that wetlands do lie adjacent to deep and open water systems (including large rivers), which interact with them regularly and influence their biodiversity, hydrology, water quality and functioning, depending upon their relative areal extent and characteristics of the macrophyte community, but that only the littoral zones between the mean highest and lowest water levels (and stream banks and the floodplains beyond them in the case of rivers) should be treated as wetlands. Shallow lakes devoid of macrophytes because of eutrophication are degraded wetlands that need to be restored.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Abernethy B, Rutherford ID (1999) Guidelines for stabilising streambanks with riparian vegetation. Technical Report 99/10. Cooperative Research Centre for Catchment Hydrology, Victoria

    Google Scholar 

  • Abtew W, Melesse AM (2013) Wetland evapotranspiration. In Abtew W, Melesse A (eds) Evaporation and evapotranspiration- measurements and estimations. Springer Science+Business Media BV, Dordrecht, pp 93–108

  • Acreman MC, Harding RJ, Lloyd CR, McNeil DD (2003) Evaporation characteristics of wetlands: experience from a wet grassland and a reedbed using eddy correlation measurements. Hydrol Earth System Sci 7:11–21

    Article  Google Scholar 

  • Ahn CH, Joo JC, Joo WJ, Ahn H, Lee S, Oh JH, Song HM (2013) Analysis of water quality improvement of Ceratophyllum demersum under laboratory condition – by nutrients removal efficiency. J Korean Soc Environm Engin 35:283–288

    Article  Google Scholar 

  • Alongi DM (2012) Carbon sequestration in mangrove forests. Carbon Managem 3:313–322

    CAS  Article  Google Scholar 

  • Arias ME (2013) Impacts of hydrological alterations in the Mekong basin to the Tonle Sap ecosystem. PhD thesis, University of Canterbury, Christ Church, New Zealand. Available at http://ir.canterbury.ac.nz/handle/10092/8913

  • Armstrong J, Armstrong W (1990) Light-enhanced convective throughflow increases oxygenation in rhizomes and rhizosphere of Phragmites australis (Cav.) Trin. ex Steud. New Phytol 114:121–128

    Article  Google Scholar 

  • Baattrup-Pedersen A, Szoszkiewicz K, Nijboer R, O’Hare M, Ferreira T (2006) Macrophyte communities in unimpacted European streams: variability in 201 assemblage patterns, abundance and diversity Hydrobiologia 566:179–196

    Article  Google Scholar 

  • Bakker ES, Sarneel JM, Gulati RD, Liu Z, van Donk E (2013) Restoring macrophyte diversity in shallow temperate lakes: biotic versus abiotic constraints. Hydrobiologia 710:23–37

    Article  Google Scholar 

  • Bal K, Struyf E, Vereecken H, Viaene P, De Doncker L, de Deckerea E, Mostaert F, Meirea P (2011) How do macrophyte distribution patterns affect hydraulic resistances? Ecol Engin 37:529–533

    Article  Google Scholar 

  • Barko JW, James WF (1998) The effects of submerged macrophytes on nutrient dynamics, sedimentation and resuspension. In Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K (eds) The structuring role of submerged macrophytes in lakes. Ecol Stud 131:197–216

  • Batzer DP, Wissinger SA (1996) Ecology of insect communities in nontidal wetlands. Annual Rev Entomol 41:75–100

    CAS  Article  Google Scholar 

  • Berger CJ, Wells SA (2008) Modeling the effects of macrophytes on hydrodynamics. J Environm Engin 134:778–788

    CAS  Article  Google Scholar 

  • Best EPH, Barko JW (eds) (2001) Modelling sediment resuspension, water quality and submersed aquatic vegetation. Kluwer Academic Publishers, the Netherlands

  • Blute NK, Brabander DJ, Hemond HF, Sutton SR, Newville MG, Rivers ML (2004) Arsenic sequestration by ferric iron plaque on cattail roots. Environm Sci Technol 38:6074–6077

    CAS  Article  Google Scholar 

  • Borina M, Milani M, Salvatoa M, Toscano A (2011) Evaluation of Phragmites australis (Cav.) Trin. evapotranspiration in Northern and Southern Italy. Ecol Engin 37:721–728

    Article  Google Scholar 

  • Bornette G, Puijalon S (2009) Macrophytes: ecology of aquatic plants. In Encyclopedia of life sciences (ELS). John Wiley, Chichester

  • Bouchard V, Frey SD, Gilbert JM, Reed SE (2007) Effects of macrophyte functional group richness on emergent freshwater wetland functions. Ecology 88:2903–2914

    PubMed  Article  Google Scholar 

  • Brix H, Sorrell BK, Orr PT (1992). Internal pressurization and convective gas flowin some emergent freshwater macrophytes. Limnol Oceanogr 37, 1420–1433

    Article  Google Scholar 

  • Brix H, Sorrell BK, Lorenzen B (2001) Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases? Aquatic Bot 69:313–324

    CAS  Article  Google Scholar 

  • Brock MA, Nielsen DL, Shiel RJ, Green JD, Langley JD (2003) Drought and aquatic community resilience: the role of eggs and seeds in sediments of temporary wetlands. Freshwater Biol 48:1207–1218

    Article  Google Scholar 

  • Burke MK, King SL, Gartner D, Eisenbies MH (2003) Vegetation, soil, and flooding relationships in a blackwater floodplain forest. Wetlands 23:988–1002

    Article  Google Scholar 

  • Burks RL, Mulderij G, Grass E, Jones I, Jacobsen L, Jeppesen E, Van Donk E (2006) Center stage: the crucial role of macrophytes in regulating trophic interactions in shallow lakes. In Bobbink R, Beltman B, Verhoeven JTA, Whigham DF (eds) Wetlands: functioning, biodiversity conservation, and restoration. Ecol Stud Vol. 191. Springer, Berlin, pp 37–59

  • Caffrey AJ, Hoyer MV, Canfield Jr DE (2007). Factors affecting the maximum depth of colonization by submersed macrophytes in Florida lakes. Lake Reservoir Managem 23:287–297

    Article  Google Scholar 

  • Campbell IC, Poole C, Giesen W, Valbo-Jorgensen J (2006) Species diversity and ecology of Tonle Sap Great Lake, Cambodia. Aquatic Sci 68:355–373

    Article  Google Scholar 

  • Caraco N, Cole J, Findlay S, Wigand C (2006) Vascular plants as engineers of oxygen in aquatic systems. Bioscience 56:219–225

    Article  Google Scholar 

  • Carlson-Mazur ML, Wiley MJ, Wilcox DA (2014) Estimating evapotranspiration and groundwater flow from water-table fluctuations for a general wetland scenario. Ecohydrology 7:378–390

    Article  Google Scholar 

  • Carpenter SR, Lodge DM (1986) Effects of submersed macrophytes on ecosystem processes. Aquatic Bot 26:341–370

  • Casanova MT, Brock MA (2000) How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Pl Ecol 147:237–250

    Article  Google Scholar 

  • Chambers PA, Kalff J (1985) Depth distribution and biomass of submersed aquatic macrophyte communities in relation to Secchi depth. Canad J Fish Aquatic Sci 42:701–709

    Article  Google Scholar 

  • Chambers PA, Lacoul P, Murphy KJ, Thomaz SM (2008) Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595:9–26

    Article  Google Scholar 

  • Chapman JA, Blickenderfer MM, Wilson BN, Gulliver JS, Missaghi S (2013) Competition and growth of eight shoreline restoration species in changing water level environments. Ecol Restorat 31:359–367

    Article  Google Scholar 

  • Christensen KK, Wigand C (1998) Formation of root plaques and their influence on tissue phosphorus content in Lobelia dortmanna. Aquatic Bot 61:111–122

    Article  Google Scholar 

  • Cook CDK (1996) Aquatic plant book. 2nd revised edition. Amsterdam: SPB Academic Publishing

    Google Scholar 

  • Cooke GD, Welch EB, Peterson S, Nichols SA (2005) Restoration and management of lakes and reservoirs, 3rd Edition. CRC Press, Boca Raton, FL, USA. 616 pp

    Google Scholar 

  • Costanza R, Farber SC, Maxwell J (1989) Valuation and management of wetland ecosystems. Ecol Econ 1:335–361

    Article  Google Scholar 

  • Coulson JC, Butterfield J (1978) An investigation of the biotic factors determining the rates of plant decomposition on blanket bog. J Ecol 66:631–650

    Article  Google Scholar 

  • Cowardin LM, Carter V, Golet FC, LaRoe ET (1979) Classification of wetlands and deepwater habitats of the United States. US Fish and Wildlife Service, Washington, DC 103 pp

    Google Scholar 

  • Cronin G, Lewis Jr WM, Schiehser MA (2006) Influence of freshwater macrophytes on the littoral ecosystem structure and function of a young Colorado reservoir. Aquatic Bot 85:37–43

    Article  Google Scholar 

  • Dacey JWH (1980) Internal winds in water lilies: an adaptation for life in anaerobic sediments. Science 210:1017–1019

    CAS  PubMed  Article  Google Scholar 

  • Daily GC (1997) Introduction: What are ecosystem services? In Daily, GC (ed) Nature’s services: societal dependence on natural ecosystems. Island Press, Washington, DC, pp 1–10

    Google Scholar 

  • de Groot RS, Wilson M, Boumans R (2002) The dynamics and value of ecosystem services: integrating economic and ecological perspectives. Ecol Econ 41:367–567

    Article  Google Scholar 

  • Den Hartog C, Kuo J (2006) Taxonomy and biogeography of seagrasses. In Anthony W.D. Larkum, Robert J. Orth, Carlos M. Duarte (eds) Seagrasses: biology, ecology and conservation. Springer, pp 1–23

  • Denny P (ed) 1985. The ecology and management of African wetland vegetation. Geobotany 6. Kluwer, Dordrecht

  • Downing, JA, Prairie, YT, Cole, JJ, Duarte, CM, Tranvik, LJ, Striegl, RG, McDowell, WH, Kortelainen, P, Caraco, NF, Melack, JM, Middelburg, JJ 2006 The global abundance and size distribution of lakes, ponds, and impoundments Limnol Oceanogr 51:2388–2397

    Article  Google Scholar 

  • Drexler JZ, Snyder RL, Spano D, Paw UKT (2004) A review of models and micrometeorological methods used to estimate wetland evapotranspiration. Hydrol Processes 18:2071– 2101

    Article  Google Scholar 

  • Dvorak J, Imhof G, Day JW, Hacker R, Holcik J, Hudec K, Pelikan J, Opateny E (1998) The role of animals and animal communities in wetlands. In Westlake DF, Květ J, Szczepanski A (eds) The production ecology of wetlands: the IBP synthesis. Cambridge University Press, Cambridge, pp 211–318

    Google Scholar 

  • Dykyjová D (1971) Production, vertical structure and light profile in littoral stands of reed bed species. Hidrobiol Bucuresti 12:361–376

    Google Scholar 

  • Dykyjová D, Hradecká D (1973) Productivity of reed bed stands in relation to the ecotypes microclimate and trophic conditions of the habitat. Polsk Arch Hydrobiol 20:111–119

    Google Scholar 

  • Dykyjová D, Květ J (1976) Primary productivity of freshwater wetlands. In Smart M (ed) International Conference on the conservation of wetlands and waterfowl, Heiligenhafen, Federal Republic of Germany, 2–6 December 1974: Proceedings. International Waterfowl Research Bureau, pp 173–178

  • Dykyjová D, Květ J (eds) (1978) Pond littoral ecosystems. Structure and functioning. Ecological Studies No. 28, Springer-Verlag, Berlin, Heidelberg, New York, 464 pp

  • Ehrlich PR, Ehrlich AH (1981) Extinction: the causes and consequences of the disappearance of species. New York, Random House

    Google Scholar 

  • Engel S (1985) Aquatic community interactions of submerged macrophytes. Technical Bulletin No 156, Department of Natural Resources, Madison, Wisconsin 53707

  • Engelhardt, KAM, Ritchie, ME (2001) Effects of macrophyte species richness on wetland ecosystem functioning and services Nature, 411, 6838:687–689

    CAS  PubMed  Article  Google Scholar 

  • Farber SC, Costanza R, Wilson MA (2002) Economic and ecological concepts for valuing ecosystem services. Ecol Econ 41:375–392

  • Finlayson, C Max, D’Cruz R (Coordinating Lead Authors), Aladin N, Barker DR, Beltram G, Brouwer J, Davidson N, Duker L, Junk WJ, Kaplowitz MD, Ketelaars H, Kreuzberg-Mukhina E, Espino GL, Lévéque C, Lopez A, Milton RG, Mirabzadeh P, Pritchard D, Revenga C, Rivera M, Hussainy AS, Silvius M, Steinkamp M (lead authors) (2005a) Inland Water Systems. In Hassan R, Scholes R, Ash N (eds) Ecosystems and human well-being: current state and trends. Washington DC, Island Press, pp 551–583

  • Finlayson CM, D’Cruz R, Davidson N (CoChair) and Synthesis Team Members (2005b) Ecosystems and human well-being: wetlands and water synthesis. Washington, DC, World Resources Institute

  • Fisher B, Turner RK, Morling P (2009) Defining and classifying ecosystem services for decision making. Ecol Econ 68:643–653

  • Franklin P, Dunbar M, Whitehead P (2008) Flow controls on lowland river macrophytes: A review. Sci Total Environm 400:369–378

  • Gasith A, Hoyer MV (1998) Structuring role of macrophytes in lakes: changing influence along lake size and depth gradients Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K (eds) The structuring role of submerged macrophytes in lakes. Ecol Stud, 131:381–392

  • Gómez-Baggethun E, Alcorlo P, Montes C (2011) Ecosystem services associated with a mosaic of alternative states in a Mediterranean wetland: case study of the Doñana marsh (southwestern Spain). Hydrol Sci J 56:1374–1387

    Article  Google Scholar 

  • Gopal B (1973) A survey of Indian studies on ecology and production of wetland and shallow water communities. Polsk Arch Hydrobiol 20:21–29

    Google Scholar 

  • Gopal B (1986) Vegetation dynamics in temporary and shallow freshwater habitats. Aquatic Bot 23:391-396

    Article  Google Scholar 

  • Gopal B (ed) (1990) Ecology and management of aquatic vegetation in the Indian subcontinent. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gopal B (2009) Wetlands and biodiversity. In Maltby E, Barker T (eds) The wetlands handbook. Blackwell Science, Oxford, UK, pp 65–95

    Chapter  Google Scholar 

  • Gopal B (with a contribution from Masing V (1990) Biology and ecology. In Patten BC, Jorgensen SE, Dumont HJ, Gopal B, Koryavov P, Květ J, Löffler H, Sverizhev Y, Tundisi JG (eds) Wetlands and shallow continental water bodies. Vol 1 Natural and Human Relationships SPB Academic Publishing, The Hague, pp 91–239

  • Gopal B, Junk WJ (2000) Biodiversity in wetlands: An introduction pages 1–10. In Gopal B, Junk WJ, Davis JA (eds) Biodiversity in wetlands: assessment, function and conservation. Vol 1 Backhuys Publishers, Leiden

  • Gopal B, Junk WJ (2001) Assessment, determinants, function and conservation of biodiversity in wetlands: Present status and future needs, pp 277–302. In Gopal B, Junk WJ, Davis JA (eds) Biodiversity in wetlands: assessment, function and conservation. Vol 2 Backhuys Publishers, Leiden

  • Gopal B, Sharma KP (1984). Seasonal changes in the concentration of major nutrient elements in the rhizomes and leaves of Typha elephantina Roxb. Aquatic Bot 20:65–73

    CAS  Article  Google Scholar 

  • Gopal B, Květ J, Löffler H, Masing V, Patten BC (1990) Definition and classification. In Patten BC, Jorgensen SE, Dumont HJ, Gopal B, Koryavov P, Květ J, Löffler H, Sverizhev Y, Tundisi JG (eds) Wetlands and shallow continental water bodies. Vol. 1. Natural and Human Relationships. SPB Academic Publishing, The Hague, pp 9–16

  • Gopal B, Chatterjee A, Gautam P (2007) Sacred waters of the Himalaya. WWF-India, New Delhi

    Google Scholar 

  • Granéli W, Solander D (1988) Influence of aquatic macrophytes on phosphorus cycling in lakes. Hydrobiologia 170:245–266

    Article  Google Scholar 

  • Greeson PE, Clark JR, Clark JE (eds) (1979) Wetland functions and values: the state of our understanding. American Water Resources Assoc., Minneapolis

    Google Scholar 

  • Grimaldo JT (2013) Aquatic plant diversity in hardwater streams across global and local scales. PhD thesis, Univ. Glasgow, UK

  • Hansson LA, Brönmark C, Nilsson PA, Björnsson K (2005) Conflicting demands on wetland ecosystem services: nutrient retention, biodiversity or both? Freshwater Biol 50:705–714

    CAS  Article  Google Scholar 

  • Haslam SM (1978) River plants. Cambridge: Cambridge University Press

    Google Scholar 

  • Haslam SM (2006). River plants: the macrophytic vegetation of watercourses. 2nd Edition. Forrest Text, Cardigan

    Google Scholar 

  • Hejný S (1960) Okologische Characteristik der Wasser- und Sumpfpflanzen in den slowakischen Tiefebenen. Donau- und Theissgebiet, Bratislava

  • Hejný S, Segal S, Raspopov IM (1998) General ecology of wetlands. In Westlake DF, Květ J, Szczepanski A (eds) The production ecology of wetlands: The IBP Synthesis. Cambridge University Press, Cambridge, pp 1–77

  • Holland MM, Whigham DF, Gopal B (1990) Wetland ecotones. In Naiman RJ, Décamps H (eds) The ecology and management of aquatic-terrestrial ecotones. MAB series 4. UNESCO, Paris, and Parthenon Publishing Group, Carnforth, UK, pp 171–198

  • Hood JLA (2012) The role of submersed macrophytes in river eutrophication and biogeochemical nutrient cycling. PhD thesis, University of Waterloo, Canada

  • Hrivnák R, Valachovic M, Ripka J (2003) Relation between macrophyte vegetation and environmental condition in the Ipel’ River (Slovakia) – case study. Arch Hydrobiol Suppl 147(1–2), Large Rivers 14:117–127

  • Jain A, Sundriyal M, Roshnibala S, Kotoky R, Kanjilal PB, Singh HB, Sundriyal RC (2011) Dietary use and conservation concern of edible wetland plants at Indo-Burma hotspot: A case study from Northeast India. J Ethnobiol Ethnomed 7:29, 17 pp

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Janauer GA, Dokulil M (2006) Macrophytes and algae in running waters. In Ziglio G, Siligardi M, Flaim G (eds) Biological monitoring of rivers. John Wiley, pp 89–109

  • Janauer GA, Schmidt-Mumm U, Schmidt B (2010) Aquatic macrophytes and current velocity in the Danube River. Ecol Engin 36:1138–1145

    Article  Google Scholar 

  • Janauer GA, Schmidt-Mumm U, Reckendorfer W (2013) Ecohydraulics and Aquatic Macrophytes: Assessing the Relationship in River Floodplains. In Maddock I, Harby A, Kemp P, Wood P (eds) Ecohydraulics: an integrated approach. Wiley, London, pp 245–259

    Chapter  Google Scholar 

  • Jeppesen E, S0ndergaard M, S0ndergaard M, Christoffersen K (eds) (l997) The structuring role of submerged macrophytes in lakes. Ecological Studies 131, Springer, Berlin

  • Jeppesen E, Meerhoff M, Jacobsen BA, Hansen RS, Søndergaard M, Jensen JP, Lauridsen TL, Mazzeo N, Branco CWC (2007) Restoration of shallow lakes by nutrient control and biomanipulation—the successful strategy varies with lake size and climate. Hydrobiologia 581:269–285

    CAS  Article  Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain-systems. Canad Special Publ Fish Aquatic Sci 106:110–127

  • Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) (2010) Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin

    Google Scholar 

  • Junk WJ, Piedade MTF, Schöngart J, Wittmann F (2012) A classification of major natural habitats of Amazonian white-water river floodplains (várzeas) Wetlands Ecol Managem 20:461–475

    Article  Google Scholar 

  • Kadlec RH, Wallace SD (2009) Treatment wetlands. CRC Press, Boca Raton, USA

    Google Scholar 

  • Keddy PA (2010) Wetland ecology: principles and conservation. 2nd edition. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kennedy MP, Lang P, Grimaldo JT, Martins SV, Bruce A, Hastie A, Lowe S, Ali MM, Sichingabula H, Dallas H, Briggs J, Murphy KJ (2015) Environmental drivers of aquatic macrophyte communities in southern tropical African rivers: Zambia as a case study. Aquatic Bot 124:19–28

    Article  Google Scholar 

  • Kupfer JA, Meitzen KM, Gao P (2014) Flooding and surface connectivity of Taxodium-Nyssa stands in a southern floodplain forest ecosystem. River Res Applic 31:1299–1310

    Article  Google Scholar 

  • Květ J, Westlake DF, Dykyjová D, Marshall EJP, Ondok JP (1998) Primary production in wetlands. In Westlake DF, Květ J, Szczepanski A (eds) The production ecology of wetlands: The IBP Synthesis. Cambridge University Press, Cambridge, pp 78–168

    Google Scholar 

  • Květ J, Jeník J, Soukupová L (2002) Freshwater wetlands and their sustainable future: A case study of Trěboň basin biosphere reserve, Czech Republic. Man and the biosphere series 28. UNESCO, Paris and the Parthenon Publishing, Carnforth, UK, 495 pp

  • Laanbroek HJ (2010) Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes A mini-review. Ann Bot 105:141–153

    CAS  PubMed  Article  Google Scholar 

  • Levinton JS (2008) Marine biology. Function, biodiversity, ecology. Oxford University Press, Oxford, 3rd Edition

  • Lewis WM (2001) Wetlands explained: wetland science, policy and politics in America. Oxford University Press, New York, 147 pp

    Google Scholar 

  • Liffen T, Gurnell AM, O’Hare MT, Pollen-Bankhead N, Simon A (2011) Biomechanical properties of the emergent aquatic macrophyte Sparganium erectum: Implications for fine sediment retention in low energy rivers. Ecol Engin 37:1925–1931

    Article  Google Scholar 

  • Lodge DM (1991) Herbivory on freshwater macrophytes, Aquatic Bot 41:195–224

    Article  Google Scholar 

  • Madsen JD, Chambers PA, James WF, Koch EW, Westlake DF (2001) The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444:71–84

    Article  Google Scholar 

  • Mäemets H, Freiberg L (2007) Coverage and depth limit of macrophytes as tools for classification of lakes. Proc Estonian Acad Sci Biol Ecol 56:124–140

    Google Scholar 

  • Maltby E (ed) (2009) Functional assessment of wetlands: towards evaluation of ecosystem services. Woodhead Publishing, Cambridge, UK

    Google Scholar 

  • Maltby E, Barker T (eds) (2009) The wetlands handbook. Blackwell Science, Oxford, UK

    Google Scholar 

  • Martin-Ortega J (2015) Water ecosystem services. Cambridge University Press, Cambridge, 175 pp

    Book  Google Scholar 

  • McInnes RJ (2007) Integrating ecosystem services within a 50-year vision for wetlands. Unpublished WWT Report to the England Wetland Vision Partnership. Slimbridge, UK, 34 pp

  • Middelboe A L, Markager S (1997) Depth limits and minimum light requirements of freshwater macrophytes. Freshwater Biol 37:553–568

    Article  Google Scholar 

  • Middleton BA, van der Valk AG, Mason DH, Williams RL, Davis CB (1991) Vegetation dynamics and seed banks of a monsoonal wetland overgrown with Paspalum distichum L. in northern India. Aquatic Bot 40:239–259

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: wetlands and water synthesis. World Resources Institute, Washington, DC

    Google Scholar 

  • Miller RC, Zedler JB (2003) Responses of native and invasive wetland plants to hydroperiod and water depth. Pl Ecol 167:57–69

    Article  Google Scholar 

  • Mitsch WJ (1994) Global wetlands: Old World and New. Elsevier, Amsterdam

    Google Scholar 

  • Mitsch WJ, Gosselink JG (2015) Wetlands. 5th edition. Wiley, New York

    Google Scholar 

  • Mitsch WJ, Nahlik AM, Wolski P, Bernal B, Zhang L, Ramberg L (2010) Tropical wetlands: seasonal hydrologic pulsing, carbon sequestration, and methane emissions. Wetlands Ecol Managem 18:573–586

    CAS  Article  Google Scholar 

  • Mitsch WJ, Bernal B, Nahlik AM, Mander U, Zhang L, Anderson CJ, Jørgensen SE, Brix H (2012) Wetlands, carbon, and climate change. Landscape Ecol 28:583–597

    Article  Google Scholar 

  • Moore T, Basiliko N (2006) Decomposition in boreal peatlands. In Wieder RK and Vitt DH (eds) Boreal peatland ecosystems. Ecol Stud 188:125–143

  • Moore TLC, Hunt WF (2012) Ecosystem service provision by stormwater wetlands and ponds – a means for evaluation? Water Research. 46:6811–6823

    CAS  PubMed  Article  Google Scholar 

  • Moss B (1990) Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200–201:367–377

    Article  Google Scholar 

  • Mower RW, Nace RL (1957) Water consumption by water-loving plants in the Malad Valley, Oneida County, Idaho. U.S. Geological Survey Water-Supply Paper 1412, United States Printing Office: Washington, DC

  • Mwaura F, Koyo AO, Zech B (2004) Cyanobacterial blooms and the presence of cyanotoxins in small high altitude tropical headwater reservoirs in Kenya. J Water Health 2:49–57

    CAS  PubMed  Google Scholar 

  • Naiman RJ, Décamps H (eds) (1990) The ecology and management of aquatic-terrestrial ecotones. MAB series 4, UNESCO, Paris, and Parthenon Publishing Group, Carnforth, UK

  • Nhiwatiwa T, De Bie T, Vervaeke B, Barson M, Stevens M, Vanhove MPM, Brendonck L (2009) Invertebrate communities in dry-season pools of a large subtropical river: patterns and processes Hydrobiologia 630:169–186

    Article  Google Scholar 

  • Nõges P, Tuvikene L, Feldmann T, Tõnno I, Künnap H, Luup H, Salujõe J, Nõges T (2003) The role of charophytes in keeping the water clear in a shallow lake. Hydrobiologia 506–509:567–573

    Article  Google Scholar 

  • Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck Jr KL, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass ecosystems Bioscience 56:987–996

    Article  Google Scholar 

  • Otis CH (1914) The transpiration of emersed water plants: its measurement and its relationships. Bot Gaz 6:457–494

  • Otte ML, Kearns CC, Doyle MO (1995) Accumulation of arsenic and zinc in the rhizosphere of wetland plants Bull Environm Contam Toxicol 55:154–161

    CAS  Article  Google Scholar 

  • Patten, BC, Jorgensen, SE, Gopal, B, Koryavov, P, Květ, J, Löffler, H, Sverizhev, Y, Tundisi, JG (1985) Ecotones: An edge approach to gene pool preservation and management in the biosphere Prospectus for a new SCOPE programme from the Scientific Advisory Committee for Wetlands and Shallow Continental Water Bodies, 20 pp

  • Petr T (2000) Interactions between fish and aquatic macrophytes in inland waters. A review. FAO Fisheries Technical Paper No. 396, Rome, FAO, 185 pp

  • Philipps RC, McRoy CP (1980) Handbook of seagrass biology. Garland

  • Pittock J, Finlayson M, Arthington AH, Roux D, Matthews JH, Biggs H, Harrison I, Blom E, Flitcroft R, Froend R, Hermoso V, Junk W, Kumar R, Linke S, Nel J, Nunes da Cunha C, Pattnaik A, Pollard S, Rast W, Thieme M, Turak E, Turpie J, van Niekerk L, Willems D, Viers J (2015) Managing freshwater, river, wetland and estuarine protected areas. In Worboys GL, Lockwood M, Kothari A, Feary S, Pulsford I (eds) Protected area governance and management. ANU Press, Canberra, pp 569–608

    Google Scholar 

  • Pokorný J, Květ J (2007) Chapter 11. Aquatic plants and lake ecosystems. In O’Sullivan PE, Reynolds CS (eds) The lakes handbook: limnology and limnetic ecology, Volume 1. Wiley-Blackwell, 708 pp

  • Pokorný J, Květ J, Rejšková A, Brom J (2010) Wetlands as energy – dissipating systems. J Industr Microbiol Biotechnol 37:1299–1305

    Article  CAS  Google Scholar 

  • Priban K, Ondok JP (1985) Heat balance components and evapotranspiration from a sedge-grass marsh. Folia Geobot Phytotax 20:41–56

    Article  Google Scholar 

  • Price P, Lovett S (eds) (1999) Riparian land management technical guidelines, Volume two: On-ground management tools and techniques, LWRRDC, Canberra

    Google Scholar 

  • Ramsar Convention Secretariat (2013) The Ramsar Convention manual: a guide to the convention on wetlands (Ramsar, Iran, 1971). 6th edition, Ramsar Convention Secretariat, Gland, Switzerland

    Google Scholar 

  • Rast W, Ryding S (eds) (1989) The control of eutrophication of lakes and reservoirs. MAB Series, Volume 1, UNESCO, Paris

  • Ray R, Ganguly D, Chowdhury C, Dey M, Das S, Dutta MK, Mandal SK, Majumder N, De TK, Mukhopadhyay SK and Jana TK (2011) Carbon sequestration and annual increase of carbon stock in a mangrove forest. Atmos Environm 45:5016–5024

    CAS  Article  Google Scholar 

  • Rejmánková E (2011) The role of macrophytes in wetland ecosystems J Ecol Field Biol 34:333–345

    Google Scholar 

  • Rejšková A, Čížková H, Brom J, Pokorný J (2012) Transpiration, evapotranspiration and energy fluxes in a temperate wetland dominated by Phalaris arundinacea under hot summer conditions. Ecohydrology 5:19–27

    Article  Google Scholar 

  • Russi D, ten Brink P, Farmer A, Badura T, Coates D, Förster J, Kumar R, Davidson N (2013) The economics of ecosystems and biodiversity for water and wetlands. London, IEEP; Gland, Ramsar Secretariat

  • Sahrawat KL (2003) Organic matter accumulation in submerged soils. Advances Agron 81:169–201

    Article  CAS  Google Scholar 

  • Sanchez-Carrillo S, Angeler DG, Sanchez-Andres R, Alvarez-Cobelas M, Garatuza-Payan J (2004) Evapotranspiration in semi-arid wetlands: relationships between inundation and the macrophyte-cover:open-water ratio. Advances Water Res 27:643–655

    Article  Google Scholar 

  • Sarukhán J, Whyte A (eds) (2005) Ecosystems and human well-being: synthesis (Millennium Ecosystem Assessment). Island Press, World Resources Institute, Washington, DC, USA

  • Scheffer M (1998) Community dynamics of shallow lakes. Chapman and Hall, London

    Google Scholar 

  • Scheffer M, Jeppesen E (2007) Regime shifts in shallow lakes. Ecosystems 10:1–3

    Article  Google Scholar 

  • Scheffer M, van Nes EH (2007) Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584:455–466

    CAS  Article  Google Scholar 

  • Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–279

    CAS  PubMed  Article  Google Scholar 

  • Schindler DW (2006) Recent advances in the understanding and management of eutrophication. Limnol Oceanogr 51:356–363

    Article  Google Scholar 

  • Scott, MJ, Bilyard GR, Link SO, Ulibarri CA, Westerdahl HE, Ricci PF, Seely HE (1998) Valuation of ecological resources and functions. Environm Managem 22:49–68

    CAS  Google Scholar 

  • Sculthorpe CD (1967) The biology of aquatic vascular plants. Arnold, London

    Google Scholar 

  • Sheldon RB, Boylen CW (1977) Maximum depth inhabited by aquatic vascular plants. Amer Midl Naturalist 97:248–254

    Article  Google Scholar 

  • Shipley B, Keddy PA, Lefkovitch LP (1991) Mechanisms producing plant zonation along a water depth gradient: a comparison with the exposure gradient. Canad J Bot 69:1420–1424

    Article  Google Scholar 

  • Snyder RL, Boyd CE (1987) Evapotranspiration by Eichhornia crassipes (Mart.) Solms and Typha latifolia L. Aquatic Bot 27:217–227

    Article  Google Scholar 

  • Spence DHN (1982) The zonation of freshwater plants. Advances Ecol Restorat 12:37–125

    Article  Google Scholar 

  • Squires L, van der Valk AG (1992) Water-depth tolerances of the dominant emergent macrophytes of the Delta Marsh, Manitoba. Canad J Bot 70:1860–1867

    Article  Google Scholar 

  • Steneck R, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environm Conservation 29:436–459

    Google Scholar 

  • Strom L, Ekberg A, Mastepanov M, Christensen TR (2003) The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Global Change Biol 9:1185–1192

    Article  Google Scholar 

  • Sttrayer DL, Findlay SEG (2010) Ecology of freshwater shore zones. Aquatic Sci 72:127–163

    Article  CAS  Google Scholar 

  • Suratman MN (2008) Carbon sequestration potential of mangroves in southeast Asia. In Bravo F, Jandl R, LeMay V, von Gadow K (eds) Managing forest ecosystems: the challenge of climate change. Springer Science + Business Media BV, pp 297–315

  • Thomaz SM, Da Cunha ER (2010) The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnol Brasil 22:218–236

    Article  Google Scholar 

  • Trepel M, Holsten B, Kieckbusch J, Otten I, Pieper F (2003) Influence of macrophytes on water level and flood dynamics in a riverine wetland in northern Germany. Int Conf. Towards Natural Flood Reduction Strategies, Warsaw 6–13 Sept 2003, 6 pp

  • Vymazal J (2010) Constructed wetlands for wastewater treatment. Water 2:530–549

    CAS  Article  Google Scholar 

  • Vymazal J (2011) Constructed wetlands for wastewater treatment: five decades of experience. Environm Sci Technol 45:61–69

    CAS  Article  Google Scholar 

  • Vymazal J (ed) (2014) The role of natural and constructed wetlands in nutrient cycling and retention on the landscape. Springer, Berlin. 326 pp

    Google Scholar 

  • Warwick NWM, Brock MA (2003) Plant reproduction in temporary wetlands: the effects of seasonal timing, depth, and duration of flooding. Aquatic Bot 77:153–167

    Article  Google Scholar 

  • Watson D (1987) Hydraulic effects of aquatic weeds in U.K. rivers. Regulat Rivers Res Managem 1:211–227

    Article  Google Scholar 

  • Webb JA, Wallis EM, Stewardson MJ (2012) A systematic review of published evidence linking wetland plants to water regime components. Aquatic Bot 103:1–14

    Article  Google Scholar 

  • Welcomme RL (1979) Fisheries ecology of floodplain rivers. Longman, London. 317 pp

    Google Scholar 

  • Welcomme RL (2000) Fish biodiversity in floodplains and their associated rivers. In Gopal B, Junk WJ, Davis JA (eds) Biodiversity in wetlands: assessment, function and conservation. Vol. 1. Backhuys Publishers, Leiden, pp 35–60

  • Weller MW, Spatcher CE (1965) Role of habitat in the distribution and abundance of marsh birds. Iowa Agriculture and Home Economics Experiment Station, Special Report 43. Ames, USA

  • Wessel DA, Rouse WR (1994) Modelling evaporation from a wetland tundra. Boundary-layer Meteorol 68:109–130

    Article  Google Scholar 

  • Westlake DF, Květ J, Szczepanski A (eds) (1998) The production ecology of wetlands: the IBP synthesis. Cambridge University Press, Cambridge

    Google Scholar 

  • Wetzel RG (1979) The role of the littoral zone and detritus in lake metabolism. Arch Hydiobiol 13:145–169:

    Google Scholar 

  • Wetzel RG (1990) Land-water interfaces: metabolic and limnological regulators. Verh lnt Verein Limnol 24:6–24

    Google Scholar 

  • Williams DD (2005) Biology of temporary waters. Oxford, Oxford University Press. 348 pp

    Book  Google Scholar 

  • Winemiller, KO (2004) Floodplain River Food Webs: Generalizations and Implications for Fisheries Management. In Welcomme RL, Petr T (ed) Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries Volume 1. Food and Agriculture Organization & Mekong River Commission. FAO Regional Office for Asia and the Pacific, Bangkok. RAP Publication 2004/16, pp 285–309

  • Worthington EB (1976) The conservation of wetlands in Africa. Proceedings of the Symposium on the Okavango Delta and its Future Utilization. Botswana Society, Gaborone, pp 61–66

  • Xiaonan D, Xiaoke W, Lu F, Zhiyun O (2008) Primary evaluation of carbon sequestration potential of wetlands in China. Acta Ecol Sinica 28:463 − 469

    Article  Google Scholar 

  • Xu S, Ma T, Liu Y (2011) Application of a multi-cylinder evapotranspirometer method for evapotranspiration measurements in wetlands. Aquatic Bot 95:45–50

    Article  Google Scholar 

  • Zhang Y, Hualin Xu, Hui Chen, Fei Wang, Huyin Huai (2014) Diversity of wetland plants used traditionally in China: a literature review. J Ethnobiol Ethnomed 10:72

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

At the outset I dedicate this article to the memory of Dr Dagmar Dykyjová, whom I had known personally since 1970. I had the privilege of her personal hospitality and motherly care during my short stay in Třeboň in 1970 during my first visit outside India. I also enjoyed and benefitted academically from my interactions with Madam Dykyjová and her group for decades thereafter. I acknowledge with grateful thanks Dr Jan Květ for his valuable suggestions that helped improve greatly an earlier draft. I am grateful also to two anonymous reviewers whose comments and suggestions were very valuable and made me think over the questions again in a wider context and elaborate my views further. I shall welcome further discussion by the wetland community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brij Gopal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gopal, B. Should ‘wetlands’ cover all aquatic ecosystems and do macrophytes make a difference to their ecosystem services?. Folia Geobot 51, 209–226 (2016). https://doi.org/10.1007/s12224-016-9248-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-016-9248-x

Keywords

  • wetlands
  • lakes
  • reservoirs
  • rivers
  • marine systems
  • ecosystem services