Skip to main content
Log in

Hybridization in natural mixed populations of sexual diploid and apomictic triploid dandelions (Taraxacum sect. Taraxacum): Why are the diploid sexuals not forced out?

Folia Geobotanica Aims and scope Submit manuscript

Abstract

In agamic complexes, the ‘minority cytotype exclusion principle’ can be modified to the ‘sexual cytotype exclusion principle’: Apomicts produce polyploid progeny of maternal genotype without the need for pollination, but still produce pollen. Outcrossing sexuals thus suffer from unsuccessful hybridizations – they produce reduced amounts of progeny. This causes a decrease in the relative frequency of sexuals and later leads to their exclusion from the population. However, in the agamic complex Taraxacum sect. Taraxacum, diploid sexuals coexist with triploid apomicts in stabilized mixed populations. This paper deals with hybridizations in natural populations, the possibilities of new triploid apomicts originating and investigates why the 'sexual cytotype exclusion principle' does not work in Taraxacum sect. Taraxacum. The progeny of diploids from natural populations screened by the flow-cytometric seed screening method consisted only of diploids. Different simulations of natural pollinations were carried experimentally. When the flowers of a diploid received different mixtures of pollen of surrounding diploids and triploids, pollination was successful and only diploid progeny was produced, probably due to the preference of high-quality compatible pollen of diploids by diploid maternal plants. Therefore, the 'sexual cytotype exclusion principle' cannot work in Taraxacum sect. Taraxacum, and diploids and triploids can coexist in common populations. Polyploid progeny was produced by a diploid plant surrounded only by triploid apomicts to a certain distance. This suggests that new polyploid apomicts can be produced only in places where isolated diploids can occur among triploids. Newly formed apomicts further spread their progeny to both areas of apomicts and areas of mixed populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Bierzychudek P (1985) Patterns in plant parthenogenesis. Experientia 41:1255–1264

    Article  Google Scholar 

  • Brock MT (2004) The potential for genetic assimilation of a native dandelion species, Taraxacum ceratophorum (Asteraceae), by the exotic congener T. officinale. Amer J Bot 91:656–663

    Article  Google Scholar 

  • Brock MT (2009) Prezygotic barriers to gene flow between Taraxacum ceratophorum and the invasive Taraxacum officinale (Asteraceae). Oecologia,161(2), 241–251

    Article  PubMed  Google Scholar 

  • Cosendai AC, Hörandl E (2010) Cytotype stability, facultative apomixis and geographical parthenogenesis in Ranunculus kuepferi (Ranunculaceae). Ann Bot 105:457–470

    Article  PubMed  PubMed Central  Google Scholar 

  • Cosendai A, Wagner J, Ladinig U, Rosche C, Hörandl E (2013) Geographical parthenogenesis and population genetic structure in the alpine species Ranunculus kuepferi (Ranunculaceae). Heredity 110:560–569

    Article  PubMed  PubMed Central  Google Scholar 

  • de Kovel CGF, de Jong GJ (2000 ) Selection on apomictic lineages of Taraxacum at establishment in a mixed sexual-apomictic population. Evol Biol 13:561–568

    Article  Google Scholar 

  • Doležel J, Göhde W (1995) Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 19:103–106

    Article  PubMed  Google Scholar 

  • Elzinga D, van der Kamp J, Den Nijs JCM, Sterk AA (1987) Cytogeography and ecology of diploids and triploids of Taraxacum section Taraxacum in South Limburg, the Netherlands. Proc Kon Ned Akad Wetensch C 90:431–442

    Article  Google Scholar 

  • Furnkranz D (1966) Cytogenetische Unterschungen an Taraxacum im Raume von Wien. Oesterr Bot Z 107:310–350

    Article  Google Scholar 

  • Hörandl E (2006) The complex causality of geographical parthenogenesis. New Phytol 171:525–538

    PubMed  Google Scholar 

  • Hörandl E, Temsch EM (2009) Introgression of apomixis into sexual species is inhibited by mentor effects and ploidy barriers in the Ranunculus auricomus complex. Ann Bot 104:81–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Husband BC (2000) Constraints on polyploid evolution: A test of the minority cytotype exclusion principle. Proc Roy. Soc Biol Sci Ser B 267:217–223

    Article  CAS  Google Scholar 

  • Husband BC (2004) The role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations. Biol J Linn Soc 82:537–546

    Article  Google Scholar 

  • Hörandl E, Dobeš C, Suda J, Vít P, Urfus T, Temsch EM, Cosendai A-C, Wagner J, Ladinig U (2011) Apomixis is not prevalent in subnival to nival plants of the European Alps. Ann Bot 108:381–390

    Article  PubMed  PubMed Central  Google Scholar 

  • Jenniskens MPJ, den Nijs JCM, Sterk AA (1985) Crossability and hybridization of taxa of Taraxacum section Taraxacum from central and western Europe. Proc Kon Ned Akad Wetensch C 88:297–338

    Google Scholar 

  • Kandori I, Hirao T, Matsunaga S, Kurosaki T (2009) An invasive dandelion unilaterally reduces the reproduction of a native congener through competition for pollination. Oecologia, 159(3), 559–569

    Article  PubMed  Google Scholar 

  • Kao RH (2007) Asexuality and the coexistence of cytotypes. New Phytol 175:764–772

    Article  PubMed  Google Scholar 

  • Koutecký P, Baďurová T, Štech M, Košnar J, Karásek J (2011) Hybridization between diploid Centaurea pseudophrygia and tetraploid C. jacea (Asteraceae): the role of mixed pollination, unreduced gametes, and mentor effects. Bot J Linn Soc 104:93–106

    Article  Google Scholar 

  • Krahulcová A, Rotreklová O, Krahulec F, Rosenbaumová R, Plačková I (2009) Enriching ploidy level diversity: the role of apomictic and sexual biotypes of Hieracium subgen. Pilosella (Asteraceae) that coexist in polyploid populations. Folia Geobot 44:281–306

  • Levin DA (1975) Minority cytotype exclusion in local plant populations. Taxon 24:35–43

    Article  Google Scholar 

  • Majeský Ľ, Vašut RJ, Kitner M, Trávníček B (2012) The pattern of genetic variability in apomictic clones of Taraxacum officinale indicates the alternation of asexual and sexual histories of apomicts. PLoS ONE 7:e41868

    Article  PubMed  PubMed Central  Google Scholar 

  • Mártonfiová L (2006) Possible pathways of the gene flow in Taraxacum sect. Ruderalia. Folia Geobot 41:183–201

    Article  Google Scholar 

  • Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J 21:97–108

    Article  PubMed  CAS  Google Scholar 

  • Meirmans PG, Calame FG, Bretagnolle F, Felber F, Den Nijs JCM (1999) Anthropogenic disturbance and habitat differentiation between sexual diploid and apomictic triploid Taraxacum sect. Ruderalia. Folia Geobot 34:451–469

    Article  Google Scholar 

  • Meirmans PG, Vlot EC, Den Nijs JCM, Menken SBJ, (2003) Spatial ecological and genetic structure of a mixed population of sexual diploid and apomictic triploid dandelions. J Evol Biol 16:343–352

    Article  PubMed  CAS  Google Scholar 

  • Mikoláš V, Mihoková L (1994) Diploidi a polyploidi sekce Ruderalia Kirschner, Olgaard et Štěpánek rodu Taraxacum na Slovensku: Příspěvek k jejich studiu. In Zborník z 5. zjazdu SBS, Blatnica, 1995, pp 92–97

  • Mogie M (2011) Pollen profile, spatial structure, and access of sex in asexual hermaphrodites. Bot J Linn Soc 103:954–966

    Article  Google Scholar 

  • Mogie M, Ford H (1988) Sexual and asexual Taraxacum species. Biol J Linn Soc 35:155-168

  • Morita T, Menken SBJ, Sterk AA (1990) Hybridization between European and Asian dandelions (Taraxacum section Ruderalia and section Mongolica). 1. Crossability and breakdown of self-incompatibility. New Phytol 114:519–529

    Article  Google Scholar 

  • Murín A (1960) Substitution of cellophane for glass covers to facilitate preparation of permanent squashes and smears. Stain Technol 35:351–353

    PubMed  Google Scholar 

  • Nishida S, Kanaoka MM, Hashimoto K, Takakura KI, Nishida T (2014). Pollen-pistil interactions in reproductive interference: comparisons of heterospecific pollen tube growth from alien species between two native Taraxacum species. Funct Ecol 28(2), 450–457

    Article  Google Scholar 

  • Otto FJ (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In Darzynkiewicz Z Crissman HA (eds): Methods in Cell Biology 33:105 –110, Academic Press, San Diego.

    Google Scholar 

  • Pierre J (2001) The role of honeybees (Apis mellifera) and other insect pollinators in gene flow between oilseed rape (Brassica napus) and wild radish (Raphanus raphanistrum) (Conference Paper). Acta Hort 561:47–51

    Article  Google Scholar 

  • Pontin DR, Wade MR, Kehrli P, Wratten SD (2006) Attractiveness of single and multiple species flower patches to beneficial insects in agroecosystems. Ann Appl Biol 148:39–47

    Article  Google Scholar 

  • Richards AJ (1970) Hybridization in Taraxacum. New Phytol 69:1103–1121

    Article  Google Scholar 

  • Richards AJ (1997) Plant breeding systems. Chapmann & Hall, London

    Book  Google Scholar 

  • Slaa EJ, Cevaal A, Sommeijer MJ (1998) Floral constancy in Trigona stingless bees foraging on artificial flower patches: A comparative study. J Apicult Res 37:191–198

    Google Scholar 

  • Šafářová L, Duchoslav M (2010) Cytotype distribution in mixed populations of polyploid Allium oleraceum measured at a microgeographic scale. Preslia 82:107–126

    Google Scholar 

  • Takakura K-I, Nishida T, Matsumoto T, Nishida S (2009) Alien dandelion reduces the seed set of a native congener through frequency-dependent and one-sided effects. Biol Invas 11:973–981

    Article  Google Scholar 

  • Takakura KI, Matsumoto T, Nishida T, Nishida S (2011). Effective range of reproductive interference exerted by an alien dandelion, Taraxacum officinale, on a native congener. J Pl Res, 124(2), 269–276

    Article  Google Scholar 

  • Tas ICQ, van Dijk PJ (1999) Crosses between sexual and apomictic dandelions (Taraxacum). I. The inheritance of apomixis. Heredity 83:707–714

    Article  PubMed  Google Scholar 

  • Tschermak-Woess E (1949) Diploides Taraxacum vulgare in Wien und Niederösterreich. Oesterr Bot Z 96:56–63

    Article  Google Scholar 

  • van der Hulst RGM, Mes THM, den Nijs JCM, Bachmann K (2000) Amplified fragment length polymorphism (AFLP) markers reveal that population structure of triploid dandelions (Taraxacum officinale) exhibits both clonality and recombination. Molec Ecol 9:1–8

    Article  Google Scholar 

  • van Dijk PJ, van Baarlen P, de Jong JH (2003) The occurrence of phenotypically complementary apomixis-recombinants in crosses between sexual and apomictic dandelions (Taraxacum officinale). Sexual Pl Reprod 16:71–76

    Article  Google Scholar 

  • van Dijk PJ (2007) Potential and realized costs of sex in dandelions Taraxacum officinale. s.l. In Apomixis: evolution, mechanisms and perspectives. E. Hörandl, U. Grossniklaus, P.J. van Dijk and T.F. Sharbel, eds. A.R. G. Gantner K.G. Rugell, Liechtenstein. pp 215–234

  • Vandel A (1928) La parthénogenèse geographique. Contribution à l´étude biologique et cytologique de la parthénogenèse naturelle. Bull. Biol. France Belgique 62:164–281

    Google Scholar 

  • Verduijn MH, van Dijk PJ, van Damme JMM (2004a) The role of tetraploids in the sexual – asexual cycle in dandelions (Taraxacum). Heredity 93:390–398

    Article  PubMed  CAS  Google Scholar 

  • Verduijn MH, van Dijk PJ, van Damme JMM (2004b) Distribution, phenology and demography of sympatric sexual and asexual dandelions (Taraxacum officinale s.l.): geographic parthenogenesis on a small scale. Biol J Linn Soc 82:205–218

    Article  Google Scholar 

Download references

Acknowledgements

The support for this research was provided by the APVV Grant Agency, Slovakia (APVV 0320-10). FCM analyses were done using equipment purchased with the support of EU Structural funds (project NEXO-Network of Excellence in Oncology, No. 007/20092.1/OPVaV). My thanks are also due to P. Mártonfi (Dept. of Botany, Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, Slovakia) for his careful reading of the manuscript and comments.

The experiments performed comply with current laws in Slovakia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenka Mártonfiová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mártonfiová, L. Hybridization in natural mixed populations of sexual diploid and apomictic triploid dandelions (Taraxacum sect. Taraxacum): Why are the diploid sexuals not forced out?. Folia Geobot 50, 339–348 (2015). https://doi.org/10.1007/s12224-015-9231-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-015-9231-y

Keywords

Navigation