Skip to main content

Effects of the hydroedaphic gradient on tree species composition and aboveground wood biomass of oligotrophic forest ecosystems in the central Amazon basin

Abstract

Amazonian forests in black-water floodplains (igapó) and upon hydromorphic white-sand soils (campinarana) cover at least 500,000 km2 of the area of the Amazon basin, but are poorly investigated ecosystems. We compared variation in tree species richness and composition (≥ 10 cm diameter at breast height), as well as forest structure and aboveground wood biomass (AGB) along hydroedaphic gradients in an igapó and a campinarana in the central Brazilian Amazon, in an area totalling 6 ha. Inundation height (igapó) and groundwater level oscillations (campinarana) were monitored during a one year period. Soil grain sizes and chemical variables were analysed. Variation in tree species composition was assessed using non-metric multidimensional scaling, and soil parameters using principal component analysis. The influence of hydroedaphic gradients on tree species richness, composition and AGB was investigated using partial and multiple regression analyses. Significant differences in soil texture, soil chemical variables, and tree species richness and composition were detected between both forest types, while AGB amounted to similar values, ranging from 141 ± 62 Mg·ha−1 in the igapó to 164 ± 121 Mg·ha−1 in the campinarana. Although both forest types were floristically distinct, inundations in the igapó and groundwater table oscillations in the campinarana influenced patterns of species richness and forest structure in similar ways, indicating decreasing species richness, forest stature and AGB in plots subjected to higher inundations and/or groundwater levels. Given the comparatively low AGB in the ecosystems studied, we call attention to the need for more studies in oligotrophic ecosystems of the Amazon basin with emphasis on their contribution to global carbon cycles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Baker TR, Phillips OL, Malhi Y et al. (2004a) Increasing biomass in Amazonian forest plots. Philos Trans, Ser B 359:353–365

    Article  Google Scholar 

  • Baker TR, Phillips OL, Malhi Y et al. (2004b) Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biol 10:545–562

    Article  Google Scholar 

  • Baraloto C, Rabaud S, Molto Q et al. (2011) Disentangling stand and environmental correlates of aboveground biomass in Amazonian forests. Global Change Biol 17:2677–2688

    Article  Google Scholar 

  • Barbosa RI, Ferreira CAC (2004) Biomassa acima do solo de um ecossistema de “campina” em Roraima, norte da Amazônia Brasileira. Acta Amazon 34:577–586

    Article  Google Scholar 

  • Bray JR, Curtis JT (1957) An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  • Brown S (2002) Measuring, monitoring, and verification of carbon benefits for forest-based projects. Philos Trans, Ser A 360:1669–1683

    CAS  Article  Google Scholar 

  • Cannel MGR (1984) Woody biomass of forest stands. Forest Ecol Managem 8:299–312

    Article  Google Scholar 

  • Centro Estadual de Unidades de Conservação (CEUC) (2009) Coletânia de Unidades de Conservação no Estado do Amazonas: leis, decretos e portarias. CEUC/SDS

  • Chave J, Andalo C, Brown S, et al. (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    CAS  Article  PubMed  Google Scholar 

  • Coomes DA (1997) Nutrient status of Amazonian caatinga forests in a seasonally dry area: nutrient fluxes in litter fall and analyses of soils. Canad J Forest Res 27:831–839

    Google Scholar 

  • Curtis JT, McIntosh RP (1951) An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32:476–496

    Article  Google Scholar 

  • Damasco G, Vicentini A, Castilho CV et al. (2013) Disentangling the role of edaphic variability, flooding regime and topography of Amazonian white-sand vegetation. J Veg Sci 24:384–394

    Article  Google Scholar 

  • DeWalt SJ, Chave J (2004) Structure and biomass of four lowland Neotropical forests. Biotropica 36:7–19

    Google Scholar 

  • Embrapa-Empresa Brasileira de Pesquisa Agropecuária (1997) Manual de Métodos de Análise de Solo. Centro Nacional de Pesquisa d Solos, Rio de Janeiro

  • Fearnside PM (1997) Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecol Managem 90:59–87

    Article  Google Scholar 

  • Ferreira LV (1997) Effects of the duration of flooding on species richness and floristic composition in three hectares in the Jaú National Park in floodplain forests in central Amazonia. Biodivers & Conservation 6:1353–1363

    Article  Google Scholar 

  • Fine PVA, Mesones I, Coley PD (2004) Herbivores promote habitat specialization by trees in Amazonian forests. Science 305:663–665

    CAS  Article  PubMed  Google Scholar 

  • Fine PVA, García-Villacorta R, Pitman NCA, et al. (2010) A floristic study of the white-sand forests of Peru. Ann Missouri Bot Gard 97:283–305

    Article  Google Scholar 

  • Fisher AA, Corbet AS, Williams CB (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. J Anim Ecol 12:42–58

    Article  Google Scholar 

  • Frangi JL, Lugo AE (1985) Ecosystem dynamics of a subtropical floodplain forest. Ecol Monogr 55:351–369

    Article  Google Scholar 

  • Haugaasen T, Peres CA (2006) Floristic, edaphic and structural characteristics of flooded and unflooded forests in the lower Rio Purus region of central Amazonia, Brazil. Acta Amazon 36:25–36

    Article  Google Scholar 

  • Houghton RA, Skole DL, Nobre CA, et al. (2000) Annual fluxes from carbon from deforestation and regrowth in the Brazilian Amazon. Nature 403:301–304

    CAS  Article  PubMed  Google Scholar 

  • Hougton RA, Lawrence KT, Hackler JL, Brown S (2001) The spatial distribution of forest biomass in the Brazilian Amazon: A comparison of estimates. Global Change Bio 7:731--746

  • Houghton RA (2005) Aboveground forest biomass and the global carbon balance. Global Change Biol 11:945–958

    Article  Google Scholar 

  • Hultine KR, Dudley TJ, Leavitt SW (2013) Herbivory-induced mortality increases with radial growth in an invasive riparian phreatophyte. Ann Bot 111:1197–1206

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • IBGE (2012) Mapas Temáticos. Available at www.mapas.ibge.gov.br/tematicos

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. Canad Spec Publ Fish Aquatic Sci 106:110–127

    Google Scholar 

  • Junk WJ, Piedade MTF, Schöngart J, et al. (2011) A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands 31:623–640

    Article  Google Scholar 

  • Klinge H, Herrera R (1983) Phytomass structure of natural plant communities on spodosols in southern Venezuela: The tall Amazon Caatinga forest. Vegetatio 53:65–84

    Article  Google Scholar 

  • Klinge H, Medina E (1979) Rio negro caatingas and campinas, Amazonas States of Venezuela and Brazil. In: Specht RL (ed) Heatlands and related shrublands. Ecosystems of the world. Vol. 9a. Elsevier Amsterdam, pp 483–488

    Google Scholar 

  • Kubitzki K (1989) The ecogeographical differentiation of Amazonia inundation forests. Plant Syst Evol 162:285–304

    Article  Google Scholar 

  • Laurance WF, Fearnside PM, Laurance SG et al. (1999) Relationship between soils and Amazon forest biomass: a landscape-scale study. Forest Ecol Managem 188:127–138

    Article  Google Scholar 

  • Malhi Y, Baker TR, Phillips OL et al. (2004) The above-ground coarse wood productivity of 104 neotropical forest plots. Global Change Biol 10:563–591

    Article  Google Scholar 

  • Malhi Y, Wood D, Baker TR et al. (2006) The regional variation of aboveground live biomass in old-growth Amazonian forests. Global Change Biol 12:1107–1138

    Article  Google Scholar 

  • Medina E, Sobrado M, Herrera R (1978) Significance of leaf orientation for leaf temperature in an Amazonian sclerophyll vegetation. Radiat Environm Biophys 15:131–140

    CAS  Article  Google Scholar 

  • Mitch WJ, Gosselink JG (2000) Wetlands, 4th edition. Wiley, New York

    Google Scholar 

  • Melack JM, Hess LL (2010) Remote sensing of the distribution and extent of wetlands in the Amazonian basin. In: Junk WJ, Piedade MTF, Wittmann F et al. (eds) Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer New York, pp 43–59

    Chapter  Google Scholar 

  • Nebel G, Kvist LP, Vanclay JL, et al. (2001) Structure and floristic composition of flood plain forests in the Peruvian Amazon I. Overstorey. Forest Ecol Managem 150:27–57

    Article  Google Scholar 

  • Paoli GD, Curran LM, Slik JWF (2008) Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia 155:287–299

    Article  PubMed  Google Scholar 

  • Parolin P, De Simone O, Haase K et al. (2004) Central Amazonian floodplain forests: tree adaptations in a pulsing system. Bot Rev 70:357–380

    Article  Google Scholar 

  • Parolin P, Lucas C, Piedade MTF, et al. (2009) Drought responses of flood-tolerant trees in Amazonian floodplains. Ann Bot 105:129–139

    PubMed Central  Article  Google Scholar 

  • Prance GT (1975) Estudos sobre a vegetação das Campinas Amazônicas – I. Introdução a uma série de publicações sobre a vegetação das Campinas Amazônicas. Acta Amazon 5:207–209

    Google Scholar 

  • Prance GT, Daly D (1985) Brazilian Amazon. In: Campbell DG, Hammond HD (eds) Floristic inventory of tropical countries. New York Botanical Garden Press, pp 523–533

  • Quesada CA, Lloyd J, Schwarz M, et al. (2010) Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7:1515–1541

    CAS  Article  Google Scholar 

  • R Development Core Team (2011) R: A Language and Environment for Statistical Computing. Vienna, Austria: the R Foundation f Statistical Computing. ISBN: 3-900051-07-0. Availabe online at http://www.R-project.org/.

  • Saatchi SS, Houghton RA, Dos Santos Alvalá RC, et al. (2007) Distribution of aboveground live biomass in the Amazon basin. Global Change Biol 13:816–837

    Article  Google Scholar 

  • Schöngart J, Piedade MTF, Wittmann F, et al. (2005) Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests. Oecologia 145:454–461

    Article  PubMed  Google Scholar 

  • Schöngart J, Wittmann F, Worbes M (2010) Biomass and net primary production of Central Amazonian floodplains forests. In: Junk WJ, Piedade MTF, Wittmann F et al. (eds) Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer New York, pp 347–388

    Chapter  Google Scholar 

  • Schöngart J, Arieira J, Felfili Fortes C, et al. (2011) Age-related and stand-wise estimates of carbon stocks and sequestration in the aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil. Biogeosciences 8:3407–3421

    Article  Google Scholar 

  • Sioli H (1954) Beiträge zur regionalen Limnologie des Amazonasgebietes. Arch Hydrobiol 45:267–283

    Google Scholar 

  • Sollins P (1998) Factors influencing species composition in tropical lowland rain forest: Does soil matter? Ecology 79:23–30

    Article  Google Scholar 

  • Stropp J, Van Der Sleen P, Assunção PA, et al. (2011) Tree communities of white-sand and terra-firme forests of the upper Rio Negro. Acta Amazon 41:521–544

    Article  Google Scholar 

  • Takeuchi M (1960) A estrutura da vegetação na Amazônia: III – A mata de campina na região do rio Negro. Bol. Mus. Paraense “Emilio Goeldi” 8:1–13

  • Veloso HP, Rangel Filho ARL, Lima JCA (1991) Classificação da vegetação Brasileira, adaptada a um sistema universal. Fundação Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro

    Google Scholar 

  • Vicentini A (2004) A vegetação ao longo de um gradiente edáfico no Parque Nacional do Jaú. In: Borges SH, Iwanaga S, Durigan CC, Pinheiro MR (eds) Janelas para a biodiversidade no Parque Nacional do Jaú: uma estratégia para o estudo da biodiversidade na Amazônia. Fundação Vitória Amazônica/WWF/IBAMA Manaus, pp 117–143

  • Wittmann F, Junk WJ (2003) Sapling communities in Amazonian white-water forests. J Biogeogr 30:1533–1544

    Article  Google Scholar 

  • Wittmann F, Junk WJ, Piedade MTF (2004) The várzea forests in Amazonia: flooding and the highly dynamic geomorphology interact with natural natural forest succession. Forest Ecol Managem 196:199–212

    Article  Google Scholar 

  • Wittmann F, Parolin P (2005) Aboveground roots in Amazonian floodplain trees. Biotropica 37:609–619

    Article  Google Scholar 

  • Wittmann F, Zorzi BT, Tizianel FAT, et al. (2008) Tree species composition, structure and aboveground wood biomass of a riparian forest of the lower Miranda River, Southern Pantanal, Brazil. Folia Geobot 43:397–411

    Article  Google Scholar 

  • Wittmann F, Schöngart J, Junk WJ (2010) Phytogeography, species diversity, community structure and dynamics of Central Amazonian floodplain forests. In: Junk WJ, Piedade MTF., Wittmann F et al. (eds) Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer New York, pp 61–102

    Chapter  Google Scholar 

  • Wittmann F, Householder E, Piedade MTF et al. (2013) Habitat specifity, endemism and the neotropical distribution of Amazonian white-water floodplain trees. Ecography 36:690–707

    Article  Google Scholar 

  • Worbes M (1989) Growth rings, increment and age of tree in inundation forest, savannas and a mountain forest in the Neotropics. I A W A Bull 10:109–122

    Google Scholar 

  • Worbes M (1997) The forest ecosystem of the floodplains. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsing system. Springer New York, pp 223–265

    Chapter  Google Scholar 

  • Zanchi FB, Waterloo MJ, Dolmann AJ et al. (2011) Influence of drainage status on soil and water chemistry, litter decomposition and soil respiration in central Amazonian forests on sandy soils. Rev Amb Água 6:6–29

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed within the frame of the German-Brazilian ATTO project and supported by the federal governments (grant No. MCTI-FINEP 1759/10; grant No. BMBF 01LB1001A). We acknowledge the fundamental support by the Max Planck Society, INPA and UEA. We thank the Amazonas State SDS/CEUC-RDS Uatumã, MAUA Group (Monitoring of Amazonian Wetlands, INPA/Max Planck, Manaus, Brazil) and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natália Targhetta.

Appendix 1

Appendix 1

Table 8 List of species found in the inventoried igapó and campinarana forest and their respective aboveground wood volume (AWV), specific wood density (ρ) and aboveground wood biomass (AGB). References refer to specific wood density values: *Average value for the species. **Average value for the genus.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Targhetta, N., Kesselmeier, J. & Wittmann, F. Effects of the hydroedaphic gradient on tree species composition and aboveground wood biomass of oligotrophic forest ecosystems in the central Amazon basin. Folia Geobot 50, 185–205 (2015). https://doi.org/10.1007/s12224-015-9225-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-015-9225-9

Keywords

  • Amazon
  • flood-pulse
  • groundwater level
  • soil texture
  • white sand forest