Skip to main content

Advertisement

Log in

Environmental, Spatial and Structural Components in the Composition of Mountain Forest in the Bavarian Alps

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

A combined systematic and stratified sampling design was conducted in mountain forests of the Bavarian Alps to find the principal dimensions of compositional variation of vegetation and their environmental drivers. In 1,505 plots species composition, forest types and soil profiles were recorded. Data from 14 climate stations were included. As we hypothesized that the tree layer is more influenced by management than the understorey and that the former modifies the habitat of the latter, the two matrices were analysed separately and the species composition of the tree layer was used as a structural predictor variable for the understorey. We applied constrained ordination to reveal the main gradients in floristic composition and variance partitioning to examine the portions of climatic, edaphic, spatial and structural components. Ellenberg indicator values and a generalized linear model were used to test whether a significant spatial gradient exists from east to west, the main spatial extent of the investigation area. Forest types were used as an overlay to assess the underlying environmental factors. It turned out that explained variance of the tree layer was considerably lower than in the understorey. Tree layer composition was more influenced by climatic variables than by soil. In the understorey, edaphic and climatic variables contributed almost equally to explained variance, but the tree layer had an additional explanatory power. No continentality gradient could be detected within the investigation area. Plant communities were well separated along gradients of acidity, moisture, nutrients and climate, which broadly confirms the known gradients for montane and subalpine zonal forests in the region. The study provides a quantitative synthesis of the knowledge on a diverse set of community types, which has so far been subject to disparate and sectorial treatment in the Bavarian Alps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen TFH, Starr TB (1982) Hierarchy. Perspectives for ecological complexity. University of Chicago Press, Chicago

    Google Scholar 

  • Austin MP, Smith TM (1989) A new model for the continuum concept. Vegetatio 83:35−47

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045−1055

    Article  Google Scholar 

  • Carr SC, Robertson KM, Platt WJ, Peet RK (2009) A model of geographical, environmental and regional variation in vegetation composition of pyrogenic grasslands of Florida. J Biogeogr 36:1600–1612

    Article  Google Scholar 

  • Dengler J, Jansen F, Glöckler F, Peet RK, De Cáceres M, Chytrý M, Ewald J, Oldeland J, Lopez-Gonzalez G, Finckh M, Mucina L, Rodwell JS, Schaminée JHJ, Spencer N (2011) The Global Index of Vegetation-Plot Databases (GIVD): a new resource for vegetation science. J Veg Sci 22:582–597

    Article  Google Scholar 

  • Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628

    Article  Google Scholar 

  • Duda RO, Hart PE (1973) Pattern classification and scene analysis. Wiley & Sons, New York

    Google Scholar 

  • Dullinger S, Willner W, Plutzar C, Englisch T, Schratt-Ehrendorfer L, Moser D, Ertl S, Essl F, Niklfeld H (2011) Post-glacial migration lag restricts range filling of plants in the European Alps. Global Ecol Biogeogr 21:829–840

    Article  Google Scholar 

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W (2003) Zeigerwerte von Pflanzen in Mitteleuropa – Datenbank. Scripta Geobotanica XVIII, Erich Goltze, Göttingen

  • Ewald J (1997) Die Bergmischwälder der Bayerischen Alpen – Soziologie, Standortbindung und Verbreitung. Dissertationes Botanicae 290, Cramer, Berlin

  • Ewald J (1999) Soziologie und Standortbindung subalpiner Fichtenwälder in den Bayerischen Alpen. Tuexenia 19:107125

    Google Scholar 

  • Ewald J (2000) The influence of coniferous canopies on understorey vegetation and soils in mountain forests of the northern Calcareous Alps. Appl Veg Sci 3:123134

    Article  Google Scholar 

  • Ewald J (2008) Plant species richness in mountain forests of the Bavarian Alps. Pl Biosyst 142:594603

    Article  Google Scholar 

  • Ewald J (2009) Waldinformationssystem Nordalpen. WINALP sammelt Wissen zum Schutz der Bergwälder. Waldforsch Aktuell 30:45–46

    Google Scholar 

  • Ewald J, Binner S (2007) Werkzeuge zur Bestimmung der Waldtypen im bayerischen Hochgebirge. Waldökol online 5:25–77

    Google Scholar 

  • Ewald J, Reuther M, Nechwatal J, Lang K (2000) Monitoring von Schäden in Waldökosystemen des bayerischen Alpenraumes. Materialien 155, Bayerisches Staatsmininsterium für Landesentwicklung und Umweltfragen, München

  • FAO (2000) FRA 2000. On definitions of forest and forest change. Forest Resources Assessment Programme, Working Paper 33, Rome. Available at: http://www.fao.org/docrep/006/ad665e/ad665e06.htm (Accessed on 20 May 2013)

  • French LJ, Smith GF, Kelly DL, Mitchell FJ, O’Donoghue S, Iremonger SF, McKee A-M (2008) Ground flora communities in temperate oceanic plantation forests and the influence of silvicultural, geographic and edaphic factors. Forest Ecol Managem 255:476–494

    Article  Google Scholar 

  • Grabherr G, Koch G, Kirchmeir H, Koch G et al. (1998) Hemerobie österreichischer Waldökosysteme. Veröffentlichungen des Österreichischen MaB-Programms 17, Österreichische Akademie der Wissenschaften, Universitätsverlag Wagner, Wien

  • Inventaire Forestier National (2011) La forêt francaise. Available at: http://www.ifn.fr/spip/IMG/pdf/METHODO.pdf (Accessed on 13 January 2012)

  • Jansen F, Dengler J (2008) GermanSL Eine universelle taxonomische Referenzliste für Vegetationsdatenbanken in Deutschland. GermanSL A universal taxonomic reference list for phytosociological databases in Germany. Tuexenia 28:239–253

    Google Scholar 

  • Keller M (2005) Schweizerisches Landesforstinventar. Anleitung für die Feldaufnahmen der Erhebung 2004–2007. Eidg. Forschungsanstalt WSL, Birmensdorf

    Google Scholar 

  • Kent M, Coker P (1992) Vegetation description and analysis - a practical approach. Belhaven Press, London

    Google Scholar 

  • Klemmt H-J, Ewald J (2012) Wachstumskundliche Unterschiede der Waldtypen in den Bayerischen Alpen. LWF Aktuell 87:18–19

    Google Scholar 

  • Kuoch R (1954) Wälder im Verbreitungsgebiet der Weißtanne. Mitt Schweiz Anst Forstl Versuchswesen 30:133–260

    Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673

    Article  Google Scholar 

  • Lexer MJ, Hönninger K, Scheifinger H, Matulla C, Groll N, Kromp-Kolb H (2000) The sensitivity of central European mountain forests to scenarios of climatic change: methodological frame for a large-scale risk assessment. Silva Fennica 34:113–129

    Article  Google Scholar 

  • Mayer H (1974) Wälder des Ostalpenraumes. Standort, Aufbau u. waldbauliche Bedeutung der wichtigsten Waldgesellschaften in den Ostalpen samt Vorland. Gustav Fischer, Stuttgart

    Google Scholar 

  • Meier ES, Kienast F, Pearman PB, Svenning J-C, Thuiller W, Araújo MB et al. (2010) Biotic and abiotic variables show little redundancy in explaining tree species distributions. Ecography 33:1038–1048

    Article  Google Scholar 

  • Oberdorfer E (2001) Pflanzensoziologische Exkursionsflora für Deutschland und angrenzende Gebiete. Ed. 8. Eugen Ulmer, Stuttgart

  • Oberdorfer E, Müller T (1984) Zur Systematik artenreicher Buchenwälder, insbesondere im praealpinen Nordsaum der Alpen. Phytocoenologica 12:539–562

    Article  Google Scholar 

  • Ohmann JL, Spies TA (1998) Regional gradient analysis and spatial pattern of woody plant communities of Oregon forests. Ecol Monogr 68:151–182

    Article  Google Scholar 

  • Økland RH (1990) Vegetation ecology: theory, methods and applications with reference to Fennoscandia. Sommerfeltia, Supplement 1, Botanical Garden and Museum, University of Oslo, Oslo

  • Økland RH (1999) On the variation explained by ordination and constrained ordination axes. J Veg Sci 10:131–136

    Article  Google Scholar 

  • Ott E, Frehner M, Frey HU, Lüscher P (1997) Gebirgsnadelwälder – Ein praxisorientierter Leitfaden für eine standortgerechte Waldbehandlung. Paul Haupt, Bern

  • Otýpková Z, Chytrý M, Tichý L, Pechanec V, Jongepier J W, Hájek O (2011) Floristic diversity patterns in the White Carpathians biosphere reserve, Czech Republic. Biologia (Bratislava) 66:266–274

    Article  Google Scholar 

  • Ozenda P (1988) Die Vegetation der Alpen im europäischen Gebirgsraum. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Polley H, Bolte A (2010) Dritte Bundeswaldinventur beginnt 2011. AFZ-DerWald 17:35–37

    Google Scholar 

  • Reger B, Kölling C, Ewald J (2011) Modelling effective thermal climate for mountain forests in the Bavarian Alps: Which is the best model? J Veg Sci 22:677–687

    Article  Google Scholar 

  • Reger B, Schüpferling R, Beck J, Dietz E, Morovitz D, Schaller R, Wilhelm G, Ewald J (2012) WINALPecobase – Ecological database of mountain forests in the Bavarian Alps. Biodivers Ecol 4:167–172

    Article  Google Scholar 

  • Roberts MR, Wuest LJ (1999) Plant communities of New Brunswick in relation to environmental variation. J Veg Sci 10:321–334

    Article  Google Scholar 

  • Rodríguez-Calcerrada J, Nanos N, Rey MC, Heredia UL, Escribano R, Gil L (2011) Small-scale variation of vegetation in a mixed forest understorey is partly controlled by the effect of overstory composition on litter accumulation. J Forest Res 16:473–483

    Article  Google Scholar 

  • Shipley B, Keddy PA (1994) Evaluating the evidence for competitive hierarchies in plant communities. Oikos 69:340–345

    Article  Google Scholar 

  • Sponagel H (2005) Bodenkundliche Kartieranleitung. Mit 103 Tabellen und 31 Listen. Ed. 5. Schweizerbart, Stuttgart

  • Svenning J-C, Skov F (2005) The relative roles of environment and history as controls of tree species composition and richness in Europe. J Biogeogr 32:1019–1033

    Article  Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide. Software for canonical community ordination (version 4.5). Biometris, Wageningen

    Google Scholar 

  • Tukey JW (1977) Exploratory data analysis. Addison-Wesley, Reading

    Google Scholar 

  • Walentowski H (1998) Die Weißtannen-Waldgesellschaften Bayerns. Eine vegetationskundliche Studie mit europäischem Bezug, mit waldbaulichen Anmerkungen und naturschutzfachlicher Bewertung. Dissertationes botanicae 291, Cramer, Berlin

  • Wildi O (2010) Data analysis in vegetation ecology. Ed. 1. Wiley-Blackwell, Oxford

  • Willner W, Grabherr G (2007) Die Wälder und Gebüsche Österreichs. Ein Bestimmungswerk mit Tabellen. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Willner W, Pietro RD, Bergmeier E (2009) Phytogeographical evidence for post-glacial dispersal limitation of European beech forest species. Ecography 32:1011–1018

    Article  Google Scholar 

  • Zimmermann L, Rötzer T, Hera U, Maier H, Schulz C, Kölling C (2007) Konzept für die Erstellung neuer hochaufgelöster Klimakarten für die Wälder Bayerns als Bestandteil eines forstlichen Standortinformationssystems. In Matzarakis A, Meyer H (eds) Proceedings zur 6. Fachtagung BIOMET des Fachausschusses Biometeorologie der Deutschen Meteorologischen Gesellschaft e.V. Berichte des Meteorologischen Institutes der Universität Freiburg 16:152–159

Download references

Acknowledgments

The research presented here forms part of the project “Forest Information System for the Northern Alps” (www.winalp.info), which was funded by the European Fund for Regional Development (EFRE) within the “INTERREG Bayern – Österreich 2007–2013” programme, the Bavarian Forest Administration and the Bavaria State Forest Enterprise (BaySF). We are indebted to the Bavarian State Institute of Forestry’s “Maps for the future” crew. The digital elevation model was obtained from the Bavarian Topographical Survey (LVG), soil maps were obtained from the Bavarian State Agency for the Environment (LfU), and climate data were obtained from the German Meteorological Service (DWD). We would like to express our thanks to the field teams for collecting the data and anonymous reviewers for valuable and constructive comments that have helped to improve the manuscript consideraby.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hagen S. Fischer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(PDF 155 kb)

Fig. S2

(PDF 155 kb)

Fig. S3

(PDF 123 kb)

Fig. S4

(PDF 197 kb)

Appendix

Appendix

Abbreviations and full names of species used in ordination diagrams

Tree layer species names: Abiealb: Abies alba; Acerpse: Acer pseudoplatanus; Alnualn: Alnus alnobetula; Alnuglu: Alnus glutinosa; Alnuinc: Alnus incana; Betupen: Betula pendula; Coryave: Corylus avellana; Fagusyl: Fagus sylvatica; Fraxexc: Fraxinus excelsior; Laridec: Larix decidua; Piceabi: Picea abies; Pinucem: Pinus cembra; Pinumu: Pinus mugo agg.; Pinusyl: Pinus sylvestris; Poputre: Populus tremula; Prunavi: Prunus avium; Prunpad: Prunus padus; Querrob: Quercus robur; Salxap: Salix appendiculata agg.; Salxar: Salix arbuscula agg.; Salxcap: Salix caprea; Soruar: Sorbus aria agg.; Soruauc: Sorbus aucuparia; Taxubac: Taxus baccata; Tilipla: Tilia platyphyllos; Ulmugla: Ulmus glabra. Suffix “1”: upper tree layer, suffix “2”: lower tree layer

Understorey species names: Aconnape: Aconitum napellus agg.; Adenglab: Adenostyles glabra; Aegopoda: Aegopodium podagraria; Alnuinca: Alnus incana; Angesylv: Angelica sylvestris; Anthramo: Anthericum ramosum; Asareuro: Asarum europaeum agg.; Asplscol: Asplenium scolopendrium; Astebell: Aster bellidiastrum; Buphsali: Buphthalmum salicifolium; Calavari: Calamagrostis varia; Caltpalu: Caltha palustris; Cardamar: Cardamine amara; Carddefl: Carduus defloratus agg.; Carealba: Carex alba; Careferr: Carex ferruginea agg.; Careflac: Carex flacca; Carehumi: Carex humilis; Careremo: Carex remota; Caresemp: Carex sempervirens agg.; Caresylv: Carex sylvatica; Chaehirs: Chaerophyllum hirsutum; Cirsoler: Cirsium oleraceum; Convmaja: Convallaria majalis; Cornsang: Cornus sanguinea; Coryavel: Corylus avellana; Desccesp: Deschampsia cespitosa agg; Dryocar: Dryopteris carthusiana agg.; Equisylv: Equisetum sylvaticum; Equitelm: Equisetum telmateia; Ericcarn: Erica carnea; Fagusylv: Fagus sylvatica; Festamet: Festuca amethystina; Filiulma: Filipendula ulmaria; Fraxexce: Fraxinus excelsior; Galirotu: Galium rotundifolium; Geumurba: Geum urbanum; Globnudi: Globularia nudicaulis; Hepanobi: Hepatica nobilis; Homoalpi: Homogyne alpina; Impanoli: Impatiens noli-tangere; Lamigale: Lamium galeobdolon agg.; Leonhisp: Leontodon hispidus; Lonixylo: Lonicera xylosteum; Lotucorn: Lotus corniculatus agg.; Luzusylv: Luzula sylvatica; Melinuta: Melica nutans agg.; Mercpere: Mercurialis perennis agg.; Molicaer: Molinia caerulea agg.; Oxalacet: Oxalis acetosella; Phytorbi: Phyteuma orbiculare; Pinusylv: Pinus sylvestris; Polycham: Polygala chamaebuxus; Poteerec: Potentilla erecta; Prenpurp: Prenanthes purpurea; Prunpadu: Prunus padus; Ranupoly: Ranunculus polyanthemos agg.; Rubucory: Rubus corylifolius agg. et fruticosus agg.; Salvglut: Salvia glutinosa; Scabcolu: Scabiosa columbaria agg.; Seslvari: Sesleria varia agg.; Soldalpi: Soldanella alpine; Sorbaria: Sorbus aria agg.; Stacsylv: Stachys sylvatica; Stelnemo: Stellaria nemorum; Ulmglab: Ulmus glabra; Urtidioi: Urtica dioica; Vaccmyrt: Vaccinium myrtillus; Violbifl: Viola biflora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, H.S., Michler, B. & Ewald, J. Environmental, Spatial and Structural Components in the Composition of Mountain Forest in the Bavarian Alps. Folia Geobot 49, 361–384 (2014). https://doi.org/10.1007/s12224-013-9185-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-013-9185-x

Keywords

Navigation