Species Richness Pattern along Altitudinal Gradient in Central European Beech Forests

Abstract

The unimodal species richness-altitude distribution pattern seems to be universal. To investigate the validity of this phenomenon in homogeneous substrate and vegetation conditions, we sampled beech-dominated forests in five volcanic mountain ranges in the Western Carpathians. European beech (Fagus sylvatica L.) formed monodominant closed-canopy stands at altitudes from 300 to 1,200 m. Along this gradient, the influence of beech on understory plant species richness was expected to be strong and uniform. The shape of the species richness-altitude relationship was analyzed for three datasets: herb layer, shrub layer, and both layers merged together. Contrary to prediction, the studied species richness-altitude relationship was inversely unimodal, with a minimum at intermediate altitudes. Quadratic regression models were statistically significant for all three datasets (P<0.001) and the explained variability ranged from 12 % to 20 %. The possible explanation for the observed pattern is twofold. In the central part of the altitudinal gradient, low species richness is due to strong competition by monodominant beech with accumulation of leaf litter and uptake soil resources, mainly water. This influence is somewhat released towards the margins of the gradient. Secondly, the species pool from the neighbouring communities increases species richness only in the lower parts of the altitudinal gradient.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Adams J (2009) Species richness patterns in the diversity of life. Springer-Praxis Publishing, Berlin-Heidelberg-New York

    Google Scholar 

  2. Augusto L, Dupouey JL, Ranger, J (2003) Effects of tree species on understory vegetation and environmental conditions in temperate forests. Ann Forest Sci 60:823–831

    Article  Google Scholar 

  3. Austin MP, Cunningham RB, Fleming PN (1984) New approaches to direct gradient analysis using environmental scalars and statistical curve-fitting procedures. Vegetatio 55:11–27

    Article  Google Scholar 

  4. Barbier S, Gosselin F, Belandier P (2008) Influence of tree species on understorey vegetation diversity and mechanisms involved – A critical review for temperate and boreal forests. Forest Ecol Managem 254:1–15

    Article  Google Scholar 

  5. Bhattarai KR, Vetaas OR (2003) Variation in plant species richness of different life form along a subtropical elevation gradient in the Himalayas, east Nepal. Global Ecol Biogeogr 12:327–340

    Article  Google Scholar 

  6. Bhattarai KR, Vetaas OR (2006) Can Rapoport’s rule explain tree species richness along the Himalayan elevation gradient, Nepal? Diversity Distrib 12:373–378

    Article  Google Scholar 

  7. Boratyńska K, Boratyński A (1990) Systematyka i geograficzne rozmieszczenie (Systematics and geographical distribution). In Białobok S (ed) Buk zwyczajny. Fagus sylvatica L. Nasze drzewa leśne (European beech. Fagus sylvatica L. Native woody species). Monogr Popularnonaukowe 10:27–73

  8. Brehm G, Colwell RK, Kluge J (2007) The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Global Ecol Biogeogr 16:205–219

    Article  Google Scholar 

  9. Brinkmann K, Patzelt A, Dickhoefer U, Schlecht E, Buerkert A (2009) Vegetation patterns and diversity along an altitudinal and a grazing gradient in the Jabal al Akhdar mountain range of northern Oman. J Arid Environm 73:1035–1045

    Article  Google Scholar 

  10. Bruun HH, Moen J, Virtanen R, Grytnes JA, Oksanen L, Angernbjörn A (2006) Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J Veg Sci 17:37–46

    Article  Google Scholar 

  11. Chase JM, Leibold MA (2002) Spatial scale dictates the productivity-biodiversity relationship. Nature 416:427–430

    PubMed  Article  CAS  Google Scholar 

  12. Chytrý M, Pyšek P, Tichý L, Knollová I, Danihelka J (2005) Invasions by alien plants in the Czech Republic: a quantitative assessment across habitats. Preslia 77:339–354

    Google Scholar 

  13. Chytrý M, Ermakov N, Danihelka J, Hájek M, Hájková P, Horsák M, Kočí M, Kubešová S, Lustyk P, Otýpková Z, Pelánková B, Valachovič M, Zelený D (2012) High species richness in hemiboreal forests of the northern Russian Altai, southern Sibiria. J Veg Sci 23:605–616

    Article  Google Scholar 

  14. Colwell RK, Hurtt GC (1994) Nonbiological gradients in species richness and a spurious rapoport effect. Amer Naturalist 144:570–595

    Article  Google Scholar 

  15. Colwell RK, Lees DC (2000) The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol Evol 15:70–76

    PubMed  Article  Google Scholar 

  16. Colwell RK, Rahbek C, Gotelli NJ (2004) The mid-domain effect and species richness patterns: what have we learned so far? Amer Naturalist 163:E1–E23

    Article  Google Scholar 

  17. Coomes DA, Grubb PJ (2000) Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments. Ecol Monogr 70:171–207

    Article  Google Scholar 

  18. Čermák J, Matyssek R, Kučera J (1993) A cause of a rapid decline of large beech trees on heavy-textured soils after substantial opening of the canopy. Lesnictví 39:175–183

    Google Scholar 

  19. Dzwonko Z (1990) Ekologia (Ecology). In Białobok S (ed) Buk zwyczajny. Fagus sylvatica L. Nasze drzewa leśne (Fagus sylvatica L. Native woody species). Monogr Popularnonaukowe 10:237–328

  20. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen. Ed. 6. Ulmer Verlag, Stuttgart

    Google Scholar 

  21. Ellenberg H, Weber HE, Düll R, Wirth W, Werner W, Paulißen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Ed. 2. Scripta Geobot 18:1–258

  22. Fekete L, Blattny T (1913) Az erdészeti jelentőségú fák és cserjék elterjedése a Magyar Állam területén (The distribution of forest trees and shrubs in Hungary). Erdészeti Lapok 52:701–720, 743–758

    Google Scholar 

  23. Gömöry D, Kukla J, Schieber B (2011) Taxonómia, fylogenéza a rozšírenie buka v Európe a na Slovensku (Taxonomy, phylogeny and distribution of beech in Europe and in Slovakia). In Barna M, Kulfan J, Bublinec E (eds) Buk a bukové ekosystémy Slovenska (Beech and beech ecosystems of Slovakia). Veda, Bratislava, pp 19–36

    Google Scholar 

  24. Graae BJ, Heskjær VS (1997) A comparison of understorey vegetation between untouched and managed deciduous forest in Denmark. Forest Ecol Managem 96:111–123

    Article  Google Scholar 

  25. Granier A, Biron P, Lemoine D (2000) Water balance, transpiration and canopy conductance in two beech stands. Agric Forest Meteorol 100:291–308

    Article  Google Scholar 

  26. Grau O, Grytnes JA, Birks HJB (2007) A comparison of altitudinal species richness pattern of bryophytes with other plant groups in Nepal, Central Himalaya. J Biogeogr 34:1907–1915

    Article  Google Scholar 

  27. Grytnes JA (2003) Species-richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography 26:291–300

    Article  Google Scholar 

  28. Grytnes JA, Heegaard E, Ihlen PG (2006) Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway. Acta Oecol 29:241–246

    Article  Google Scholar 

  29. Grytnes JA, Beaman JH, Romdal TS, Rahbek C (2008) The mid-domain effect matters: simulation analyses of range-size distribution data from Mount Kinabalu, Borneo. J Biogeogr 35:2138–2142

    Article  Google Scholar 

  30. Härdtle W, von Oheimb G, Friedel A, Meyer H, Westphal C (2004) Relationship between pH-values and nutrient availability in forest soils – the consequences for the use of ecograms in forest ecology. Flora 199:134–142

    Article  Google Scholar 

  31. Jacob M, Viedenz K, Polle A, Thomas FM (2010) Leaf litter decomposition in temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica). Oecologia 164:1083–1094

    PubMed  Article  PubMed Central  Google Scholar 

  32. Jarolímek I, Šibík J (eds) (2008) Diagnostic, constant and dominant species of the higher vegetation units of Slovakia. Veda, Bratislava

    Google Scholar 

  33. Kessler M (2000) Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes. Pl Ecol 149:181–193

    Article  Google Scholar 

  34. Kooijman AM, Cammeraat E (2010) Biological control of beech and hornbeam affects species richness via changes in the organic layer, pH and soil moisture characteristics. Funct Ecol 24:469–477

    Article  Google Scholar 

  35. Körner C (1999) Alpine plant life. Springer Verlag, Berlin, Heidelberg

    Google Scholar 

  36. Kučera A (2011) Vlastnosti půd holých bučin (lesní půdy skupiny typů geobiocénů Fagetum pauper) (Beech forests soil properties (the forest soils in group of types of geobiocoenoses Fagetum pauper)). Dissertation, Mendel University, Brno

  37. Larcher W (2003) Physiological plant ecology: ecophysiology and stress physiology of functional groups. Springer Verlag, Berlin, Heidelberg

    Google Scholar 

  38. Leathwick JR, Burns BR, Clarkson BD (1998) Environmental correlates of tree alpha-diversity in New Zealand primary forests. Ecography 21:235–246

    Article  Google Scholar 

  39. Lobo JM, Castro I, Moreno JC (2001) Spatial and environmental determinants of vascular plant species richness distribution in the Iberian Peninsula and Balearic Islands. Biol J Linn Soc 73:233–253

    Article  Google Scholar 

  40. Lorenz K, Preston CM, Krumrei S, Feger KH (2004) Decomposition of needle/leaf litter from Scots pine, black cherry, common oak and European beech at a conurbation forest site. Eur J Forest Res 123:177–188

    Article  Google Scholar 

  41. Marhold K, Hindák F (eds) (1998) Zoznam nižších a vyšších rastlín flóry Slovenska (Checklist of non-vascular and vascular plants of Slovakia). Veda, Bratislava

    Google Scholar 

  42. Matuszkiewicz W (2012) Przewodnik do oznaczania zbiorowisk roślinnych Polski (Guidebook for determination of plant communities in Poland). Wydawnictwo Naukowe PWN, Warszawa

    Google Scholar 

  43. McCain CM, Grytnes JA (2010) Elevational gradients in species richness. In eLS (Encyclopedia of life sciences). John Wiley & Sons, Chichester. http://www.els.net, doi:10.1002/9780470015902.a0022548

  44. Michalko J, Magic D, Berta J, Rybníček K, Rybníčková E (1987) Geobotanical map of C.S.S.R. Slovak Socialist Republic. Text part. Veda, Bratislava

    Google Scholar 

  45. Minchin PR (1989) Montane vegetation of the Mt. Field massif, Tasmania: a test of some hypotheses about properties of community patterns. Vegetatio 83:97–110

    Article  Google Scholar 

  46. Moravec J, Husová M, Chytrý M, Neuhäuslová Z (2000) Přehled vegetace České republiky. Svazek 2. Hygrofilní, mezofilní a xerofilní opadavé lesy (Vegetation survey of the Czech Republic. Volume 2. Hygrophilous, mesophilous and xerophilous deciduous forests). Academia, Praha

    Google Scholar 

  47. Mölder A, Bernhardt-Römermann M, Schmidt W (2008) Herb-layer diversity in deciduous forests: Raised by tree richness or beaten by beech? Forest Ecol Managem 256:272–281

    Article  Google Scholar 

  48. Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. John Wiley & Sons, New York

    Google Scholar 

  49. Oommen MA, Shanker K (2005) Elevational species richness patterns emerge from multiple local mechanisms in Himalayan woody plants. Ecology 86:3039–3047

    Article  Google Scholar 

  50. Packham JR, Thomas PA, Atkinson MD, Degen T (2012) Biological flora of the British Isles: Fagus sylvatica. J Ecol 100:1557–1608

    Article  Google Scholar 

  51. Pärtel M, Zobel M, Zobel K, van der Maarel E (1996) The species pool and its relation to species richness: evidence from Estonian plant communities. Oikos 75:111–117

    Article  Google Scholar 

  52. Rahbek C (1995) The elevational gradient of species richness: a uniform pattern? Ecography 18:200–205

    Article  Google Scholar 

  53. Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecol Lett 8:224–239

    Article  Google Scholar 

  54. Sanders NJ, Moss J, Wagner D (2003) Patterns of ant species richness along elevational gradients in an arid ecosystem. Global Ecol Biogeogr 12:93–102

    Article  Google Scholar 

  55. SAS (2009) SAS/STAT_ User’s Guide, Release 9.1.3 Edition. SAS Institute, Cary, North Carolina

    Google Scholar 

  56. Schipka F, Heimann J, Leuschner C (2005) Regional variation in canopy transpiration of Central European beech forests. Oecologia 143:260–270

    PubMed  Google Scholar 

  57. Shmida A, Wilson MV (1985) Biological determinants of species diversity. J Biogeogr 12:1–20

    Article  Google Scholar 

  58. Schmidt W (2005) Herb layer species as indicators of biodiversity of managed and unmanaged beech forests. Forest Snow Landscape Res 79:111–125

    Google Scholar 

  59. Schröter M, Härdtle W, von Oheimb G (2012) Crown plasticity and neighbourhood interactions of European beech (Fagus sylvatica L.) in an old-growth forest. Eur J Forest Res 131:787–798

    Article  Google Scholar 

  60. Schume H, Jost G, Hager H (2004) Soil water depletion and recharge patterns in a mixed and pure forest stands of European beech and Norway spruce. J Hydrol 289:258–274

    Article  Google Scholar 

  61. Slavíková J (1958) Einfluss der Buche (Fagus sylvatica L.) als Edifikator auf die Entwicklung der Krautschicht in den Buchenphytozonosen. Preslia 30:19–42

    Google Scholar 

  62. Stevens GC (1992) The elevational gradient in altitudinal range: an extension of Rapoport's latitudinal rule to altitude. Amer Naturalist 140:893–911

    Article  CAS  Google Scholar 

  63. Sydes C, Grime JP (1981) Effects of tree leaf litter on herbaceous vegetation in deciduous woodland. J Ecol 69:249–262

    Article  Google Scholar 

  64. ter Braak CJF, Šmilauer P (2002) CANOCO Reference manual and CanoDraw for Windows User’s guide. Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, New York

    Google Scholar 

  65. Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453

    Article  Google Scholar 

  66. Tinya F, Márialigeti S, Király I, Nément B, Ódor P (2009) The effect of light conditions on herbs, bryophytes and seedlings of temperature mixed forests in Őrség, Western Hungary. Pl Ecol 204:69–81

    Article  Google Scholar 

  67. Tjoelker MG, Boratynski A, Bugala W (eds) (2007) Biology and ecology of Norway spruce. Springer, Dordrecht

    Google Scholar 

  68. van Eimern J (1984) Variations of the radiation within and above a beech forest during a phenological year. GeoJournal 8:271–275

    Article  Google Scholar 

  69. van Oijen D, Feijen M, Hommel P, den Ouden J, de Waal R (2005) Effects of tree species composition on within-forest distribution of understorey species. Appl Veg Sci 8:155–166

    Article  Google Scholar 

  70. Vockenhuber EA, Scherber C, Langenbruch C, Meißner M, Seidel D, Tscharntke T (2011) Tree diversity and environmental context predict herb species richness and cover in Germany’s largest connected deciduous forest. Perspect Pl Ecol 13:111–119

    Article  Google Scholar 

  71. Willner W, Grabherr G (2007) Die Wälder und Gebüsche Österreichs. Ein Bestimmungswerk mit Tabellen. 1 Textband. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  72. Willner W, Di Pietro R, Bergmeier E (2009) Phytogeographical evidence for post-glacial dispersal limitation of European beech forest species. Ecography 32:1011–1018

    Article  Google Scholar 

  73. Willner W, Moser D, Grabherr G (2004) Alpha and beta diversity in Central European beech forests. Fitosociologia 41(suppl. 1):15–20

    Google Scholar 

  74. Wulf M, Naaf T (2009) Herb layer response to broadleaf tree species with different leaf litter quality and canopy structure in temperate forests. J Veg Sci 20:517–526

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dušan Senko for preparing the map. Our study was supported by grants of the Slovak Grant Agency for Science VEGA (2/0059/11, 2/0027/13) and the long-term research development project no. RVO 67985939 to the Institute of Botany of the Czech Academy of Sciences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard Hrivnák.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hrivnák, R., Gömöry, D., Slezák, M. et al. Species Richness Pattern along Altitudinal Gradient in Central European Beech Forests. Folia Geobot 49, 425–441 (2014). https://doi.org/10.1007/s12224-013-9174-0

Download citation

Keywords

  • Altitude
  • Beech-dominated forests
  • Competition
  • Species pool
  • Species richness