Folia Geobotanica

, Volume 49, Issue 3, pp 407–423

Regionalizing Nutrient Values of Vegetation to Assess Site Fertility of Mountain Forests in the Bavarian Alps

Article

Abstract

Height growth and productivity of forests depend on temperature, water and nutrients. Ellenberg indicator values that summarize vegetation response to growth factors are suited to predict site fertility. Macronutrients (NPK), as represented by N-values, are a crucial component of site fertility and susceptibility towards biomass extraction. Based on 1,500 vegetation plots from an inventory stratified over all important forest types of the Bavarian Alps we regionalized Ellenberg N-values against area-wide soil, climate and relief predictors including a spatial effect at a scale of 1 : 25,000, resulting in a general additive model (GAM) with eight predictors and an explained deviance of 53 % on test data. The N-value layer was combined with other regionalized indicator values (temperature, reaction, moisture) to predict height of Norway spruce at reference age (site index) of an independent forest inventory data set, resulting in a GAM with an explained deviance of 35 %. After temperature the nutrient value was the second most important predictor of site index and clearly superior to soil reaction. It can be concluded that forest growth is sensitive to reductions of NPK-availability through whole tree harvesting and that maps of N-values deliver important information for planning sustainable harvesting.

Keywords

Biomass harvesting Ellenberg indicator values Forest nutrition Forest site Generalized additive models Norway spruce Nutrient availability Site index Spatial autocorrelation Understorey vegetation 

Supplementary material

12224_2013_9167_MOESM1_ESM.pdf (60 kb)
ESM 1(PDF 59 kb)

References

  1. Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. BioScience 48:921–34CrossRefGoogle Scholar
  2. AG Bodenkunde (2005) Bodenkundliche Kartieranleitung (KA5). Ed. 5. Bundesanstalt für Geowissenschaften und Rohstoffe und Geologische Landesämter der Bundesrepublik Deutschland, Schweitzerbart’sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  3. AK Standortskartierung (1996) Forstliche Standortsaufnahme. IHW-Verlag, Eching bei MünchenGoogle Scholar
  4. Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modeling. Ecol Modelling 157:101–118CrossRefGoogle Scholar
  5. Austin MP, Smith TM (1989) A new model for the continuum concept. Vegetatio 83:35–47CrossRefGoogle Scholar
  6. Baier R, Meyer J, Göttlein A (2007) Regeneration niches of Norway spruce (Picea abies [L.] Karst.) saplings in small canopy gaps in mixed mountain forests of the Bavarian Limestone Alps. Eur J Forest Res 126:11-22CrossRefGoogle Scholar
  7. Baier R, Ettl R, Hahn C, Göttlein A (2006) Early development and nutrition of Norway spruce (Picea abies [L.] Karst.) seedlings on different seedbeds of the Bavarian Limestone Alps – a bioassay. Ann Forest Sci 63:339–348CrossRefGoogle Scholar
  8. Baur F (1881) Die Rotbuche in Bezug auf Ertrag, Zuwachs und Form. Paul Parey, BerlinGoogle Scholar
  9. BayStMELF (Bavarian State Forestry Administration) (2010) Holz: Energie großgeschrieben. LWF aktuell 74:13–15. Available at: http://www.lwf.bayern.de/veroeffentlichungen/lwf-aktuell/74-holzenergie/a74-Holzenergie-und-Energieholz.pdf
  10. Beck J, Dietz E, Falk W, Kölling C (2009) Tagungsbeitrag zur Jahrestagung der DBG: Böden – eine endliche Ressource, September 2009, Bonn. Berichte der DBG. Available at: http://www.dbges.de
  11. Beers TW, Dress PE, Wensel LC (1966) Aspect transformation in site productivity research. J Forest 64:691–692Google Scholar
  12. Bergès L, Gégout J-C, Franc A (2006) Can understory vegetation accurately predict site index? A comparative study using floristic and abiotic indices in sessile oak (Quercus petraea Liebl.) stands in northern France. Ann Forest Sci 63:31–42CrossRefGoogle Scholar
  13. Binkley D (1986) Forest nutrition management. J. Wiley & Sons, New YorkGoogle Scholar
  14. Bochter R (1984) Böden naturnaher Bergwaldstandorte auf carbonatreichen Substraten. Nationalpark Berchtesgaden Forschungsberichte 6, BerchtesgadenGoogle Scholar
  15. Chapin FS III, Matson PA, Mooney H (2002) Principles of terrestrial ecosystem ecology. Springer-Verlag, New YorkGoogle Scholar
  16. Cajander AK (1926) The theory of forest types. Acta Forest Fenn 29:1–108Google Scholar
  17. Dengler J, Jansen F, Glöckler F, Peet RK, De Cáceres M, Chytrý M, Ewald J, Oldeland J, Lopez-Gonzalez G, Finckh M, Mucina L, Rodwell JS, Schaminée JHJ, Spencer N (2011) The Global Index of Vegetation-Plot Databases (GIVD): a new resource for vegetation science. J Veg Sci 22:582–597CrossRefGoogle Scholar
  18. Dormann CF, McPherson JM, Araújo, MB, Bivand R, Bolliger J, Carl G (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628CrossRefGoogle Scholar
  19. Ellenberg H (1967) Vegetations- und Bodenkundliche Methoden der forstlichen Standortskartierung. Veröffentlichungen des Geobotanischen Institutes der ETH, Stiftung Rübel, Zürich, Heft 39, Geobotanisches Institut der ETH, Stiftung Rübel, ZürichGoogle Scholar
  20. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen. Verlag Eugen Ulmer, StuttgartGoogle Scholar
  21. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulissen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa, 2. Aufl. Scripta Geobot 18, E. Goltze, GöttingenGoogle Scholar
  22. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W (2001) Zeigerwerte von Pflanzen in Mitteleuropa, 3. Aufl. Scripta Geobot 18, E. Goltze, GöttingenGoogle Scholar
  23. Ertsen ACD, Alkemade JRM, Wassen MJ (1998) Calibrating Ellenberg indicator values for moisture, acidity, nutrient availability and salinity in the Netherlands. Pl Ecol 135:113–124CrossRefGoogle Scholar
  24. Ewald J (1997) Die Bergmischwälder der Bayerischen Alpen – Soziologie, Standortbindung und Verbreitung. Diss Bot 209, J. Cramer, BerlinGoogle Scholar
  25. Ewald J (1999) Soziologie und Standortbindung subalpiner Fichtenwälder in den Bayerischen Alpen. Tuexenia 19:107–125Google Scholar
  26. Ewald J (2000) Does phosphorus deficiency cause low vitality in European beech (Fagus sylvatica L.) in the Bavarian Alps? Forstwiss Centralbl 119:276–96CrossRefGoogle Scholar
  27. Ewald J (2003) A critique for phytosociology. J Veg Sci 14:291–296CrossRefGoogle Scholar
  28. Ewald J (2005) Ecological background of crown condition, growth and nutritional status of Picea abies (L.) Karst. in the Bavarian Alps. Eur J Forest Res 124:55–66CrossRefGoogle Scholar
  29. Ewald J (2009) Epigeic bryophytes do not improve bioindication by Ellenberg values in mountain forests. Basic Appl Ecol 10:420–426CrossRefGoogle Scholar
  30. Ewald J, Binner S (2007) Werkzeuge zur Bestimmung der Waldtypen im bayerischen Hochgebirge. Waldökologie online 5:25–77Google Scholar
  31. Fensterer V (2010) Statistical methods in niche modelling for spatial prediction of forest tree species. Diploma thesis, University Munich. Available at: http://epub.ub.uni-muenchen.de/11579/
  32. Falk W, Stetter U (2010) Stickstoff – vom Mangel in den Überfluss. LWF aktuell 78:18-20. Available at: http://www.lwf.bayern.de/veroeffentlichungen/lwf-aktuell/78-bze-bodenzustandserhebung/Stickstoff-vom-Mangel-in-den-Ueberfluss.pdf
  33. Fiedler HJ, Fiedler E, Hoffmann F, Höhne H, Sauer G, Thomasius H (1962) Auswertung eines Streunutzungsversuches von H. Vater aus dem Jahre 1912. Archiv für Forstwesen und Landschaftsökologie 11:70–128Google Scholar
  34. Fielding AH, Haworth PF (1995) Testing the generality of bird-habitat models. Conservation Biol 9:1466–1481CrossRefGoogle Scholar
  35. Flückiger W, Braun S (1995) Revitalization of an alpine protective forest by fertilization. Pl Soil 168:481–488CrossRefGoogle Scholar
  36. Franklin J (2009) Mapping species distributions. Spatial inference and prediction. Cambridge University Press, CambridgeGoogle Scholar
  37. Glatzel G (1991) The impact of historic land-use and modern forestry on nutrient relations of Central European forest ecosystems. Fertilizer Res 27:1–8CrossRefGoogle Scholar
  38. Gulder HJ Kölbel M (1993) Waldbodeninventur in Bayern. Forstliche Forschungsberichte München 132, MünchenGoogle Scholar
  39. Häring T, Reger B, Ewald J, Hothorn C, Schroeder B (2012) Predicting Ellenberg’s indicator value for soil moisture in the Bavarian Alps using additive georegression. Appl Veg Sci 16:110–121CrossRefGoogle Scholar
  40. Häring T, Reger B, Ewald J, Hothorn T, Schröder B (2014) Regionalising indicator values for soil reaction in the Bavarian Alps – from averages to multivariate spectra. Folia Geobot (this issue) doi:10.1007/s12224-013-9157-1
  41. Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman and Hall, LondonGoogle Scholar
  42. Hirzel AH, Guisan A (2002) Which is the optimal sampling strategy for habitat suitability modelling? Ecol Modelling 157:331–341CrossRefGoogle Scholar
  43. Kahle HP, Van Oijen M, Spiecker H, Ågren GI, Chertov O, Kellomäki S, Mellert KH, Pérez-Martínez PJ, Prietzel J, Straussberger R, Rehfuess KE, Unseld R (2008) Analysis of the relative improtance of nutrients, climatic factors, and CO2 as causes of observed changes in growth. In Kahle HP, Karjalainen T, Schuck A, Ågren GI, Kellomäki S, Mellert KH, Prietzel J, Rehfuess KE, Spiecker H (eds) Causes and consequences of forest growth trends in Europe – results of the RECOGNITION Project. European Forest Institute Research Report 21, Brill, Leiden, Boston, pp 217–235Google Scholar
  44. Kilian W, Grey DC (1984) Site classification and mapping. Principles and trends. In Grey DC, Schönau APG, Schutz CJ (eds) Proceedings of the IUFRO-Symposium on site and productivity of fast growing plantations. South African Forest Research Institute & Department of Environmental Affairs, Pretoria, pp 51–68Google Scholar
  45. Klemmt HJ (2007) Standortabhängige Ableitung der Höhenwuchsleistung aus Forstinventurdaten mit Hilfe von Data-Mining-Methoden. Grundlage für die regionale, standortbezogene Feinjustierung des forstlichen Wuchsmodells SILVA. PhD Thesis, Technische Universität München, FreisingGoogle Scholar
  46. Klemmt HJ, Ewald J (2011) Wachstum der Fichte nach Waldtypen. AFZ/Der Wald 24:22Google Scholar
  47. Kohlpaintner M, Göttlein A (2009) Mit dem Wald verschwindet auch der Humus – Großflächige Störungen in Hochgebirgswäldern führen zu Nährstoffverlusten und beeinträchtigen langfristig die Waldentwicklung. LWF Aktuell 71:22–24Google Scholar
  48. Kölling C, Hoffmann M, Gulder HJ (1996) Soil chemistry depth gradients as characteristic state variables of forest ecosystems. J Pl Nutr Soil Sci 159:69–77Google Scholar
  49. Kölling C (2010) Maß halten. Biomassenutzung kann Produktionskapital verzehren. LWF Aktuell 78:28–31Google Scholar
  50. KRdL (Kommission zur Reinhaltung der Luft) (2008) Vegetation als Indikator für Stickstoffeinträge – Bewertung der Stickstoffverfügbarkeit durch Ellenberg-Zeigerwerte der Waldbodenvegetation / Vegetation as an indicator of nitrogen input – Assessment of nitrogen availability by Ellenberg indicator values of forest ground vegetation (VDI-Richtlinie 3959 Blatt 1). Kommission Reinhaltung der Luft im VDI und DIN – Normenausschuss KRdL, Beuth-Verlag, BerlinGoogle Scholar
  51. Kühn I (2007) Incorporating spatial autocorrelation may invert observed patterns. Diversity Distrib 13:66–69Google Scholar
  52. Meiwes K-J, Asche N, Block J, Kallweit R, Kölling C, Raben G, von Wilpert K (2008) Potentiale und Restriktionen der Biomassenutzung. AFZ/Der Wald 63:598–603Google Scholar
  53. Mellert KH, Prietzel J, Straussberger R, Rehfuess KE (2004a) Relationships between recent changes of tree growth in two Bavarian Scots Pine (Pinus sylvestris) stands and the temporal variation of stand nutrition and climate. Austrian J Forest Res 121:141–166Google Scholar
  54. Mellert KH, Prietzel J, Straussberger R, Rehfuess KE (2004b) Long-term nutritional trends of conifer stands in Europe – Results from the RECOGNITION project. Eur J Forest Res 123:305–319CrossRefGoogle Scholar
  55. Mellert KH, Prietzel J, Straussberger R, Rehfuess KE, Kahle HP, Spiecker H (2008) Relationships between long-term trends of air temperature, precipitation, nitrogen nutrition and growth of coniferous stands in Central Europe and Finland. Eur J Forest Res 127:507–524CrossRefGoogle Scholar
  56. Mellert KH, Fensterer V, Küchenhoff H, Reger B, Kölling C, Klemmt HJ, Ewald J (2011) Hypothesis-driven species distribution models for tree species in the Bavarian Alps. J Veg Sci 22:635–646CrossRefGoogle Scholar
  57. Mellert KH, Göttlein A (2013) Identification and validation of thresholds and limiting nutrient factors of Norway spruce by using new nutritional levels and modern regression. German J Forest Res (in press)Google Scholar
  58. Mellert KH, Ewald J (in press) Nutrient limitation and site-related growth potential of Norway spruce (Picea abies [L.] Karst) in the Bavarian Alps. Eur J Forest Res Google Scholar
  59. Mitscherlich EA (1909) Das Gesetz des Minimums und das Gesetz des abnehmenden Bodenertrages. Landwirtschaftliche Jahrbücher 38:537–552Google Scholar
  60. Moosmayer HU, Schöpfer W, Mühlhäusser G, Kublin E, Burger HU (1996) Schätzfunktionen zur Ermittlung der standortstypischen Wuchsleistung von Fichte und Buche. German J Forest Res 167:95–103Google Scholar
  61. Neebe W, Hofmann F (1982) Der Gesamt-Ca-Gehalt des Bodens als wesentliche Fruchtbarkeitskennziffer forstlicher Standorte. Archiv Naturschutz Landschaftsf 22:19–25Google Scholar
  62. Paciorek CJ (2009) The importance of scale for spatial-confounding bias and precision of spatial regression estimators. Harvard University Biostatistics Working Paper Series, Working Paper 98. Available at: http://www.bepress.com/harvardbiostat/paper98
  63. Prietzel J, Ammer C (2008) Mixed mountain forests of the Bavarian Limestone Alps: Reduction of ungulate density results not only in increased regeneration success but also in improved soil fertility. German J Forest Res 179:104–112Google Scholar
  64. Prietzel J, Dechamps N, Spielvogel S (2013) Analysis of non-cellulosic polysaccharides helps to reveal the history of thick organic surface layers on calcareous Alpine soils. Pl Soil 365:93–114CrossRefGoogle Scholar
  65. Pretzsch H (2001) Modellierung des Waldwachstums. Blackwell Wissenschafts-Verlag, Berlin, WienGoogle Scholar
  66. R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at: http://www.R-project.org
  67. Reger B, Häring T, Ewald J (2014) The TRM-model of potential natural vegetation in mountain forests. Folia Geobot (this issue) doi:10.1007/s12224-013-9158-0
  68. Reger B, Kölling C, Ewald J (2011) Modelling effective thermal climate for mountain forests in the Bavarian Alps: Which is the best model? J Veg Sci 22:677–687CrossRefGoogle Scholar
  69. Reger B, Schüpferling R, Beck J, Dietz E, Morovitz D, Schaller R, Wilhelm G, Ewald J (2012) WINALPecobase – Ecological database of mountain forests in the Bavarian Alps. Biodiversity Ecol 4:167–171CrossRefGoogle Scholar
  70. Rubner K (1950) Moostypen als Vegetationsweiser. Forstarchiv 21:87–89Google Scholar
  71. Schaffers AP, Sýkora KV (2000) Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J Veg Sci 11:225–244CrossRefGoogle Scholar
  72. Schober R (1995) Ertragstafeln wichtiger Baumarten. Sauerländer’s Verlag, Frankfurt am MainGoogle Scholar
  73. Skovsgaard JP, Vanclay JK (2007) Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry 81:13–31CrossRefGoogle Scholar
  74. Sterba H (1988) Increment losses by full-tree harvesting in Norway spruce. Forest Ecol Managem 24:283–292CrossRefGoogle Scholar
  75. Thiffault E, Hannam KD, Pare D, Titus BD, Hazlett PW, Maynard DG, Brais S (2011) Effects of forest biomass harvesting on soil productivity in boreal and temperate forests – A review. Environm Rev 19:278–309CrossRefGoogle Scholar
  76. Weis W, Dietz E, Göttlein A, Häusler W, Kölling C, Mellert KH, Rothe A, Rücker G, Seifert T (2009) Erstellung von Nährstoffbilanzen für die Staatswaldflächen in Bayern als Grundlage einer nachhaltigen Biomassenutzung. Unpublished report, Technical University MunichGoogle Scholar
  77. Weis W, Göttlein A (2012) Nährstoffnachhaltige Biomassenutzung. LWF Aktuell 90:44–47. Available at: http://www.lwf.bayern.de/waldoekologie/standort-bodenschutz/aktuell/2012/45290/linkurl_1.pdf
  78. Wilson SM, Pyatt DG, Malcolm DC, Connolly T (2001) The use of ground vegetation and humus type as indicators of soil nutrient regime for an ecological site classification of British forests. Forest Ecol Managem 140:101–116CrossRefGoogle Scholar
  79. Wood SN (2006) Generalized additive models – an introduction with R. Ed. 1. Chapman & Hall, Boca Raton, London, New YorkGoogle Scholar
  80. Zimmermann L, Rötzer T, Hera U, Maier H, Schulz C, Kölling C (2007) Konzept für die Erstellung neuer hochaufgelöster Klimakarten für die Wälder Bayerns als Bestandteil eines forstlichen Standortinformationssystems. In Matzarakis A, Meyer H (eds) Proceedings zur 6. Fachtagung BIOMET des Fachausschusses Biometeorologie der Deutschen Meteorologischen Gesellschaft e.V. Berichte des Meteorologischen Institutes der Universität Freiburg 16:152–159Google Scholar
  81. Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Statistics for Biology and Health, Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2013

Authors and Affiliations

  1. 1.Faculty of ForestryUniversity of Applied Sciences Weihenstephan TriesdorfFreisingGermany

Personalised recommendations