Advertisement

Folia Geobotanica

, Volume 48, Issue 2, pp 271–284 | Cite as

Substantial Genome Size Variation in Taraxacum stenocephalum (Asteraceae, Lactuceae)

  • Pavel TrávníčekEmail author
  • Jan Kirschner
  • Hana Chudáčková
  • Frederick Rooks
  • Jan Štěpánek
Article

Abstract

There are only a few exceptions to the rule that polyploidy in Taraxacum is associated with agamospermy. One of them is the sexual, tetraploid species Taraxacum stenocephalum. Incidentally, remarkable variation in karyology was found in this species. The present study aims to confirm this variation by an extensive screen of nuclear DNA content. Individuals from two large populations in the Lesser and Greater Caucasus, Georgia were analyzed using flow cytometry to ascertain intraspecific nuclear DNA content variation. Across the whole data set comprising all 159 individuals, a 1.223-fold difference was detected based on propidium iodide (PI) analyses. To verify this finding, we compared flow-cytometric data obtained using DAPI (4′,6-diamidino-2-phenylindole) and PI staining using a representative subset of individuals. This comparison revealed a 1.194-fold difference in DNA content for DAPI and a 1.219-fold difference for PI. Mean nuclear genome size in absolute terms (2C value ± s.d.) was estimated at 4.38 ± 0.21 pg, ranging from 4.01 pg to 4.89 pg, despite the invariable chromosome counts of 2n = 32. A regression analysis comparing the datasets for DAPI and PI staining found a strong correlation between data obtained by the DAPI and PI dyes (R = 0.976; P = 0.0001). Simultaneous high-resolution flow-cytometric analyses also proved the accuracy of our findings. We discuss possible sources of these large differences in DNA content within Taraxacum stenocephalum. Further research is needed to identify the source of this remarkable variation.

Keywords

Flow cytometry Genome size Intraspecific DNA content variation Taraxacum stenocephalum 

Notes

Acknowledgments

We wish to thank George Nakhutsrishvili, Otar Abdaladze and other staff of the Institute of Botany of the Georgian Academy of Science, who were instrumental to the success of the expedition, and Eva Ibermajerová who helped with plant cultivation. This project was financially supported by the Czech Science Foundation (206/05/0970) and partly by the Research Plan of the Institute of Botany, Academy of Sciences of the Czech Republic (AV0Z60050516), the Research Plan of the Faculty of Science, Charles University in Prague (MSM 0021620828) and another grant from the Czech Science Foundation (206/08/H049).

References

  1. Bennetzen JL (2002) Opening the door to comparative plant biology. Science 296:60–63PubMedCrossRefGoogle Scholar
  2. Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Developm 15:621–627CrossRefGoogle Scholar
  3. Bennetzen JL, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot (Oxford) 95:127–132CrossRefGoogle Scholar
  4. Caceres ME, Pace CD, Mugnozza GTS, Kotsonis P, Ceccarelli M, Cionini PG (1998) Genome size variations within Dasypyrum villosum: correlations with chromosomal traits, environmental factors and plant phenotypic characteristics and behavior in reproduction. Theor Appl Genet 96:559–567CrossRefGoogle Scholar
  5. Doležel J, Bartoš J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot (Oxford) 95:99–110CrossRefGoogle Scholar
  6. Doležel J, Göhde W (1995) Sex determination in dioecious plants Melandrium album and Melandrium rubrum using high-resolution flow cytometry. Cytometry 19:103–106PubMedCrossRefGoogle Scholar
  7. Doležel J, Doleželová M, Novák FJ (1994) Nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biol Pl 36:351–357CrossRefGoogle Scholar
  8. Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protocols 2:2233–2244CrossRefGoogle Scholar
  9. Evans GM, Durrant A, Rees H (1966) Associated nuclear changes in the induction of flax genotrophs. Nature 212:697–699CrossRefGoogle Scholar
  10. Flavell RB, Bennett MD, Smith JB, Smith DB (1974) Genome size and proportion of repeated nucleotide DNA sequence in plants. Biochem Genet 12:257–269PubMedCrossRefGoogle Scholar
  11. Greilhuber J (1988) Critical reassessment of DNA content variation in plants. In Brandham PE (ed) Proceedings of the Third Chromosome Conference. Kew, 14 September 1987. H.M.S.O., London, pp 39–50Google Scholar
  12. Greilhuber J (1997) The problem of variable genome size in plants (with special reference to woody plants). In Borzan Z, Schlarbaum SE (eds) Cytogenetic studies of forest trees and shrub species. Croatian Forests, Inc. and Faculty of Forestry, University of Zagreb, Zagreb, pp 13–34Google Scholar
  13. Greilhuber J (1998) Intraspecific variation in genome size: a critical reassessment. Ann Bot (Oxford) 82(Suppl. A):27–35CrossRefGoogle Scholar
  14. Greilhuber J (2005) Intraspecific variation in genome size in angiosperms: identifying its existence. Ann Bot (Oxford) 95:91–98CrossRefGoogle Scholar
  15. Greilhuber J, Ebert I (1994) Genome size variation in Pisum sativum. Genome 37:646–655PubMedCrossRefGoogle Scholar
  16. Greilhuber J, Obermayer R (1997) Genome size and maturity group in Glycine max (soybean). Heredity 78:547–551CrossRefGoogle Scholar
  17. Greilhuber J, Obermayer R (1998) Genome size variation in Cajanus cajan (Fabaceae): a reconsideration. Pl Syst Evol 212:135–141CrossRefGoogle Scholar
  18. Gupta PK, Rees H (1975) Tolerance of Lolium hybrids to quantitative variation in nuclear DNA. Nature 257:587–588PubMedCrossRefGoogle Scholar
  19. Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16:1252–1261PubMedCrossRefGoogle Scholar
  20. Jenkins G, Rees H (1983) Synaptonemal complex formation in a Festuca hybrid. In Brandham PE, Bennett MD (eds) Kew chromosome conference, Vol 2. Allen & Unwin, London, pp 233–242Google Scholar
  21. Jones RN, Rees H (1982) B chromosomes. Academic Press, New YorkGoogle Scholar
  22. Kirschner J, Štěpánek J (1993) The genus Taraxacum in the Caucasus. 1, Introduction. 2, The section Porphyrantha. Folia Geobot Phytotax 28:295–320Google Scholar
  23. Kirschner J, Štěpánek J (1996) Modes of speciation and evolution of sections in Taraxacum. Folia Geobot Phytotax 31:415–426CrossRefGoogle Scholar
  24. Kirschner J, Štěpánek J (1998) A revision of Taraxacum sect. Piesis (Compositae). Folia Geobot 33:391–414CrossRefGoogle Scholar
  25. Kirschner J, Štěpánek J, Tichý M, Krahulcová A, Kirschnerová L, Pellar L (1994) Variation in Taraxacum bessarabicum and allied taxa of the section Piesis (Compositae): Allozyme diversity, karyotypes and breeding behaviour. Folia Geobot Phytotax 29:61–83CrossRefGoogle Scholar
  26. Michaelson MJ, Price HJ, Ellison JR, Johnston JS (1991) Comparison of plant DNA contents determined by Feulgen microspectrophotometry and laser flow cytometry. Amer J Bot 78:183–188CrossRefGoogle Scholar
  27. Morgan-Richards M, Trewick SA, Chapman HM, Krahulcová A (2004) Interspecific hybridization among Hieracium species in New Zealand: evidence from flow cytometry. Heredity 93:34–42PubMedCrossRefGoogle Scholar
  28. Neumann P, Koblížková A, Navrátilová A, Macas J (2006) Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics 173:1047–1056PubMedCrossRefGoogle Scholar
  29. Noirot M, Barre P, Louarn C, Duperray C, Hamon S (2000) Nucleus–cytosol interactions – a source of stochimetric error in flow cytometric estimation of nuclear DNA content in plant. Ann Bot (Oxford) 86:309–316CrossRefGoogle Scholar
  30. Noirot M, Barre P, Duperray C, Hamon S, De Kochko A (2005) Investigation on the causes of stochiometric error in genome size estimation using heat experiments: consequences on data interpretation. Ann Bot (Oxford) 95:111–118CrossRefGoogle Scholar
  31. Obermayer R, Greilhuber J (1999) Genome size in Chinese soybean accessions – stable or variable? Ann Bot (Oxford) 84:259–262CrossRefGoogle Scholar
  32. Obermayer R, Greilhuber J (2005) Does genome size in Dasypyrum villosum vary with fruit colour? Heredity 95:91–95PubMedCrossRefGoogle Scholar
  33. Ohri D (1998) Genome size variation and plant systematics. Ann Bot (Oxford) 82(Suppl. A):75–83CrossRefGoogle Scholar
  34. Pečinka A, Suchánková P, Lysák MA, Trávníček B, Doležel J (2006) Nuclear DNA content variation among central European Koeleria taxa. Ann Bot (Oxford) 98:117–122CrossRefGoogle Scholar
  35. Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA, Panaud O (2006) Doubling genome size without polyploidization: Dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262–1269PubMedCrossRefGoogle Scholar
  36. Poggio L, Rosato M, Chiavarino AM, Naranjo CA (1998) Genome size and environmental correlations in maize (Zea mays ssp. mays, Poaceae). Ann Bot (Oxford) 82(Suppl. A):107–115CrossRefGoogle Scholar
  37. Porter HL, Rayburn AL (1990) B-chromosome and C-band heterochromatin variation in Arizona maize population adapted no different altitude. Genome 33:659–662CrossRefGoogle Scholar
  38. Price HJ, Hodnett G, Johnston JS (2000) Sunflower (Helianthus annuus) leaves contain compounds that reduce nuclear propidium iodide fluorescence. Ann Bot (Oxford) 86:929–934CrossRefGoogle Scholar
  39. Rosato M, Chiavarino AM, Naranjo CA, Camara Hernandez J, Poggio L (1998) Genome size and numerical polymorphism for the B chromosome in races of Maize (Zea mays ssp. mays, Poaceae). Amer J Bot 85:168–174CrossRefGoogle Scholar
  40. Roux N, Toloza A, Radecki Z, Zapata-Arias FJ, Doležel J (2003) Rapid detection of aneuploidy in Musa using flow cytometry. Pl Cell Rep 21:483–490Google Scholar
  41. SanMiguel P, Bennetzen JL (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann Bot (Oxford) 82:37–44CrossRefGoogle Scholar
  42. Šmarda P, Bureš P (2006) Intraspecific DNA content variability in Festuca pallens on different geographical scales and ploidy levels. Ann Bot (Oxford) 98:665–678CrossRefGoogle Scholar
  43. Šmarda P, Bureš P (2010) Understanding intraspecific variation in genome size in plants. Preslia 82:41–61Google Scholar
  44. Šmarda P, Bureš P, Horová L, Rotreklová O (2008) Intrapopulation genome size dynamics in Festuca pallens and the early stages of genome size evolution in plants. Ann Bot (Oxford) 102:599–607CrossRefGoogle Scholar
  45. Suda J, Krahulcová A, Trávníček P, Rosenbaumová R, Peckert T, Krahulec F (2007a) Genome size variation and species relationships in Hieracium sub-genus Pilosella (Asteraceae) as inferred by flow cytometry. Ann Bot (Oxford) 100:1323–1335CrossRefGoogle Scholar
  46. Suda J, Weiss-Schneeweiss H, Tribsch A, Schneeweiss GM, Trávníček P, Schönswetter P (2007b) Complex distribution patterns of di-, tetra- and hexaploid cytotypes in the European high mountain plant Senecio carniolicus (Asteraceae). Amer J Bot 94:1391–1401CrossRefGoogle Scholar
  47. Temsch EM, Greilhuber J (2000) Genome size variation in Arachis hypogaea and A. monticola re-evaluated. Genome 43:449–451PubMedGoogle Scholar
  48. Vicient CM, Suoniemi A, Anamthawat-Jonsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Pl Cell 11:1769–1784Google Scholar
  49. Walker DJ, Monino I, Correal E (2006) Genome size in Bituminaria bituminosa (L.) C. H. Stirton (Fabaceae) populations: separation of “true” differences from environmental effects on DNA determination. Environm Exp Bot 55:258–265CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2013

Authors and Affiliations

  • Pavel Trávníček
    • 1
    • 2
    Email author
  • Jan Kirschner
    • 1
  • Hana Chudáčková
    • 2
    • 3
  • Frederick Rooks
    • 1
    • 2
  • Jan Štěpánek
    • 1
    • 2
  1. 1.Institute of BotanyAcademy of Sciences of the Czech RepublicPrůhoniceCzech Republic
  2. 2.Department of Botany, Faculty of ScienceCharles UniversityPragueCzech Republic
  3. 3.Department of BotanyNational Museum in PraguePragueCzech Republic

Personalised recommendations